Méthodes de variétés invariantes pour les équations de Saint Venant et les systèmes hamiltoniens discrets

par Pascal Noble

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Jean-Michel Roquejoffre et de Jean-Paul Vila.

Soutenue en 2003

à Toulouse 3 .


  • Résumé

    Dans cette thèse, on analyse par des méthodes de variétés invariantes deux problèmes distincts: le phénomène des roll-waves en hydraulique et l'existence de breathers discrets dans des réseaux non linéaires discrets. Les roll-waves sont des ondes progressives périodiques et discontinues solutions entropiques des équations de Saint Venant. Grace aux théorèmes de Fenichel, on montre l'existence de roll-waves continues "visqueuses" proches des roll-waves discontinues lorsqu'on ajouté aux équations un petit terme de viscosité. On étudie ensuite la stabilité linéaire de ces roll-waves discontinues. Enfin, on montre l'existence de roll-waves de petite amplitude dans des canaux à fond périodiques. Les breathers discrets sont des oscillations périodiques, localisées en espace dans des réseaux non linéaires discrets. On analyse d'abord le modèle Fermi-Pasta-Ulam (FPU) diatomique. En formulant le problème sous la forme d'un mapping en dimension infinie, on montre, via une réduction à une variété centrale, l'existence de breathers discrets de petite amplitude pour des rapports de masses arbitraires. On utilise aussi cette approche pour montrer l'existence de breathers discrets dans des chaines de spins ferromagnétiques.

  • Titre traduit

    Invariant manifold methods for Saint Venant equations and discrete hamiltonian systems


  • Résumé

    We analyze in this thesis two different problems with invariant manifold methods: the roll-waves phenomenon in hydraulic and the existence of discrete breathers in nonlinear discrete lattices. Roll-waves are periodic and discontinuous travelling waves, entropic solutions of the Saint Venant equations. With the help of Fenichel theorems, we prove the existence of continuous "viscous" roll-waves close to the discontinuous roll-waves when we add a small viscous term in the equations. Then, we study the linear stability of these discontinuous roll-waves. Finally, we prove the existence of small amplitude roll-waves in a channel with a periodic bottom. Discrete breathers are periodic and spatially localized excitations in nonlinear discrete lattices. We first analyze the diatomic Fermi-Pasta-Ulam (FPU) chain. The problem is formulated as a mapping in a loop space. Using a centre manifold reduction, we prove the existence of small amplitude breathers in a diatomic chain with an arbitrary mass ratio. We also use this technique to prove the existence of discrete breathers in ferromagnetic spin chains.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 236 p.
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 235-236

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2003TOU30181
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.