Mouvement brownien fractionnaire, applications aux télécommunications. Calcul stochastique relativement à des processus fractionnaires

par Nicolas Savy

Thèse de doctorat en Mathématiques et applications

Sous la direction de Jean-Bernard Gravereaux.

Soutenue en 2003

à Rennes 1 .


  • Résumé

    Le mouvement Brownien fractionnaire (mBf) est devenu un processus incontournable dès que l'on veut s'affranchir des propriétés de Markov et d'indépendance des accroissements. Nous verrons les principales propriétés de ce processus, nous insisterons sur certains aspects de son utilisation comme modèle de file fluide. On développe ensuite la construction d'une intégrale anticipative relative au mBf à partir de l'intégrale anticipative relative au mouvement Brownien. Fort de cette idée, nous avons introduit une intégrale anticipative relative à des processus de Poissons filtrés (pPf) à partir d'une intégrale anticipative pour des processus de Poissons marqués, intégrale que nous relions à l'intégrale de Stieltjès. L'étude se poursuit par une formule de Itô pour des fonctionnelles cylindriques et par un résultat sur la continuité de Holdër des processus intégrés. Pour finir, un théorème de convergence en loi d'une suite de pPf vers un processus de Volterra est établi.


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 198 p.
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. : 137 réf.

Où se trouve cette thèse ?

  • Bibliothèque : Université de Rennes I. Service commun de la documentation. Section sciences et philosophie.
  • Disponible pour le PEB
  • Cote : TA Rennes 2003/41
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.