Problèmes de similarités, opérateurs de type Foguel et calcul fonctionnel

par Benoît Pruvost

Thèse de doctorat en Mathématiques pures

Sous la direction de Catalin Badea.

Soutenue en 2003

à Lille 1 .


  • Résumé

    Cette thèse est consacrée à l'étude de la similarité entre opérateurs agissant sur des espaces de Banach ou de Hilbert. En 1988, C. Apostol a conjecturé que si deux opérateurs d'un espace de Hilbert sont équivalents analytiquement sur un ouvert contenant l'union de leurs spectres généralisés, alors ces opérateurs sont similaires. Nous apportons une réponse positive à la conjecture dans le cas où un des opérateurs est une isométrie d'indice fini. Les techniques employées permettent d'obtenir d'autres conséquences de l'équivalence analytique. Une généralisation du critère de Sz-Nagy sur la similarité avec une isométrie est obtenue. Dans la deuxième partie, on étudie les opérateurs de type Foguel R(X). Ils ont fourni le premier exemple d'opérateur à puissances bornées qui n'est pas polynomialement borné (S. Foguel, A. Lebow (1968)) et le premier exemple d'opérateur polynomialement borné non similaire à une contraction (G. Pisier 1997). Nous montrons que si X est un opérateur de Foguel-Hankel ou un opérateur généralisant l'exemple de Lebow, alors R(X) est quadratiquement proche de R(O) si et seulement si R~Y) est similaire à une contraction. Nous donnons un exemple où cette équivalence est fausse. Une caractérisation de la similarité d'un opérateur algébrique T avec une contraction est donnée. Lorsqu'un opérateur algébrique T vérifie une condition étendue de type Kreiss, alors on donne une estimation pour le calcul fonctionnel. Plus précisément pour tout polynôme complexe p. On peut majorer la norme de p(T) en fonction des normes unifonnes de dérivés successives de p.

  • Titre traduit

    Similarity problems, Foguel-type operators and functional calculus


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 73 p.
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 71-73

Où se trouve cette thèse ?

  • Bibliothèque : Université des sciences et technologies de Lille (Villeneuve d'Ascq, Nord). Service commun de la documentation.
  • Disponible pour le PEB
  • Cote : 50376-2003-307
  • Bibliothèque : Université des sciences et technologies de Lille (Villeneuve d'Ascq, Nord). Service commun de la documentation.
  • Disponible pour le PEB
  • Cote : 50376-2003-308
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.