Architecture multiéchelle et propriétés mécaniques de nanocomposites

par Sandrine Marceau

Thèse de doctorat en Matériaux polymères et composites

Sous la direction de Nicole Alberola.

Soutenue en 2003

à l'Université Savoie Mont Blanc .


  • Résumé

    L'objectif de ce travail consiste à améliorer nos connaissances sur les mécanismes à l'origine des effets de renforcement dans le cas des matériaux nanocomposites. Dans cette optique, des systèmes modèles, à matrice polymère amorphe renforcée par des nanoparticules de silice colloi͏̈dale, ont été élaborées. Les propriétés optiques, physico-chimiques et mécaniques de ces matériaux ont été reliés à leur morphologie. L'analyse morphologique des nanocomposites a permis de montrer que les nanoparticules de silice étaient agrégées pour des taux de charges inférieurs à 6%, un chemin percolant apparaissant pour des taux de charges supérieurs. L'étude de la mobilité moléculaire des chaînes du polymère a permis de montrer que les nanoparticules n'induisaient aucune variation de mobilité globale des chaînes. L'augmentation de la partie réelle du module et les variations d'amplitude et de position de la relaxation principale à taux de renfort croissant, révélées lors de l'analyse du comportement viscoélastique linéaire des matériaux, ont été reliées à leur différentes architectures. Ces résultats ont ensuite été confrontés aux résultats théoriques issus de deux approches. A l'échelle mésoscopique, nous avons montré au moyen d'un modèle micromécanique adapté que la présence du réseau percolant de charges pouvait être à l'origine du fort effet de renforcement observé et du décalage de la relaxation principale vers les basses températures pour les composites renforcés par des taux de charges supérieurs au seuil de percolation. A l'échelle atomique, nous avons analysé un système PBMA-silice par dynamique moléculaire. Grâce à ce modèle, nous avons pu analyser l'influence de la présence de la charge sur la mobilité moléculaire du polymère et les propriétés mécaniques des nanocomposites.

  • Titre traduit

    Multiscale structure and mechanical properties of nanocomposites


  • Résumé

    The purpose of this study is to improve the understanding of the mechanisms leading to reinforcement effects in nanocomposite materials. To do this, "model" systems were fabricated using an amorphous polymeric matrix reinforced by colloidal silica nanoparticles. The optical, physicochemical and mechanical properties of these materials were linked to their morphology. The morphological analysis of the nanocomposites showed that the silica nanoparticles were in form of dispersed aggregates for filler fractions lower than 6 %, whereas for higher fractions a percolating network of silica was evident. The study of the molecular mobility of the polymer chains showed that the nanoparticles did not induce any variation of the global mobility of the chains. The linear viscoelastic behaviour showed that the variations with temperature of the real part of Young's modules and the damping factor tan d were connected to the underlying structure of the nanocomposites. The experimental results were then compared to those obtained using two different theoretical approaches. At the mesoscopic scale, we used an adapted micromechanical model to show that the presence of the percolating network of fillers could induce a strong reinforcement effect and a shift of the main relaxation towards lower temperatures for fractions of silica higher than the percolation threshold. At the atomic scale, we analysed a PBMA-silica system by molecular dynamics. Using this model, we could show the influence of the filler on the molecular mobility of the polymer and on the mechanical properties of the nanocomposites.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 197 p.
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. 222 rèf.

Où se trouve cette thèse ?

  • Bibliothèque : Université Savoie Mont Blanc (Le Bourget-du-Lac, Savoie). Service commun de la documentation et des bibliothèques universitaires. Section Sciences.
  • Disponible pour le PEB
  • Bibliothèque : Université Savoie Mont Blanc (Le Bourget-du-Lac, Savoie). Service commun de la documentation et des bibliothèques universitaires. Section Sciences.
  • Non disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.