Intersections de classes non quasi-analytiques

par Pascal Beaugendre

Thèse de doctorat en Mathématiques

Sous la direction de Jacques Chaumat.

Soutenue en 2002

à Paris 11, Orsay .


  • Résumé

    Dans le cadre d'intersections de classes non quasi-analytiques à croissance modérée. J. Chatumat et A. Chollet ont démontré, notamment, un théorème d'extension de Whitney, pour des jets définis sur un compact et un théorème de Lojasiewicz sur la régulière situation. Ces intersections sont contenues dans l'intersection des classes de Gevrey. On établit ici un théorème d'extension dans une famille d'intersections de classes plus vaste, en ce sens que, tout jet de Whitney appartient a l'une des intersections considérées. Ensuite, en utilisant une méthode d'interpolation à l'aide de polynômes de Lagrange, due à W. Pawlucki et W. Plesniak, on établit aussi un théorème d'extension linéaire pour les jets définis sur des compacts ayant la propriété de Markov. Ces extensions de jets peuvent être choisies réelles analytiques sur le complémentaire du compact. Ces résultats sont complétés par trois exemples de situations pour lesquelles il n'existe pas d'opérateur d'extension linéaire continu. Enfin, on démontre un théorème de Lojasiewicz. Tous ces résultats sont étroitement reliés, aux théorèmes classiques de la théorie des fonctions infiniment dérivables.


  • Résumé

    In the case of intersections of non quasi-analytic classes of ultradifferentiable functions with moderate growth, J. Chaumat and A. M. Chollet prove, among other things, a Whitney extension theorem. For jets on a compact set and a Lojasiewicz theorem in the regular situation. These intersections are included in the intersection of Gevrey classes. Here we prove an extension theorem in the case of more general intersections such that every Whitney Jet belongs to one of them. Then, by adopting a method of Lagrange interpolation polynomials due to W. Pawlucki et W. Plesniak, we also prove a linear extension theorem in the case of a compact set with Markov's property. These extensions of jets can be chosen to be real analytic on the complementary of the compact. Those results are completed by three examples of non-existence of a linear continuous extension. Then we prove a Lojasiewicz theorem. All the results are closely related to already know facts of the theory of infinitely differentiable functions.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 89 p.
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 79-81. Index

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud (Orsay, Essonne). Service Commun de la Documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : M/Wg ORSA(2002)8
  • Bibliothèque : Bibliothèque Mathématique Jacques Hadamard (Orsay, Essonne).
  • Disponible sous forme de reproduction pour le PEB
  • Cote : BEAU
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.