Équilibre général avec une double infinité d'agents et de biens

par Victor Filipe Martins da Rocha

Thèse de doctorat en Mathématiques

Sous la direction de Bernard Cornet.

Soutenue en 2002

à Paris 1 .


  • Résumé

    Nous proposons une nouvelle approche pour démontrer l'existence d'équilibres de Walras pour des économies avec un espace mesuré d'agents et un espace des biens de dimension finie ou infinie. Dans un premier temps (chapitre 1) on démontre un résultat de discrétisation des correspondances mesurables, qui nous permettra de considérer une économie avec un espace mesuré d'agents comme la limite d'une suite d'économies avec un nombre fini d'agents. Dans le cadre des économies avec un espace mesuré d'agents, on applique tout d'abord (chapitre 2) ce résultat aux économies avec un nombre fini de biens, puis (chapitre 3) aux économies avec des biens modélisé par un Banach séparable ordonné par un cône positif d'intérieur non vide, et finalement (chapitre 4) aux économies avec des biens différenciés. On parvient ainsi à généraliser les résultats d'existence de Aumann (1966), Schmeidler (1969), Hildenbrand (1970), Khan et Yannelis (1991), Rustichini et Yannelis (1991), Ostroy et Zame (1994) et Podczeck (1997) aux économies avec des préférences non ordonnées et un secteur productif non trivial.

  • Titre traduit

    General equilibrium for large square economies


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (xxiv-98 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 95-97

Où se trouve cette thèse ?

  • Bibliothèque : Université Panthéon-Sorbonne. Bibliothèque Pierre Mendès France.
  • Consultable sur place dans l'établissement demandeur
  • Cote : E 02 : 63
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.