Modélisation mathématique et numérique de la combustion de brouillards de gouttes polydispersés

par Frédérique Laurent

Thèse de doctorat en Sciences. Mathématiques appliquées

Sous la direction de Marc Massot et de Vitaly Volpert.

Soutenue en 2002

à Lyon 1 .

Le jury était composé de Marc Massot, Vitaly Volpert.


  • Résumé

    On introduit un modèle multi-fluides eulérien pour décrire l'évolution de sprays polydispersés dans des flammes diphasiques. Nous montrons que ce modèle peut être obtenu à partir d'un niveau cinétique de description. Il peut ainsi prendre en compte des interactions entre gouttes d'inerties différentes, comme la coalescence, ce qui n'avait jamais été fait avec un modèle eulérien. Il est validé par des comparaisons avec des mesures expérimentales pour le cas des sprays dilués sur des configurations de flammes laminaires de diffusion à contre-courant. Il est également comparé numériquement à des méthodes d'échantillonnages dans des cas de sprays dilués ou denses. D'autre part, son analyse numérique est menée dans un cas simplifié où seule subsiste l'évaporation. Cette analyse nous permet d'introduire d'autres méthodes numériques d'ordre arbitrairement élevé pour discrétiser l'espace des phases en taille et décrire l'évaporation. Elle nous permet aussi de considérer la propagation de flammes planes de prémélange, en présence d'un spray polydispersé. Cette configuration est décrite par un système de réaction-diffusion pour un modèle thermo-diffusif du gaz couplé au modèle cinétique du spray. La propagation de telles flammes est décrite par des ondes progressives du système complet. Pour en étudier l'existence, on utilise des méthodes de degré pologique pour des opérateurs elliptiques dans des domaines non bornés. Cependant, le modèle cinétique introduit une EDP hyperbolique. Les résultats d'analyse numérique permettent d'envisager une discrétisation de l'espace des tailles de gouttes, afin de se ramener à un système dynamique de dimension finie. Il reste à ajouter une diffusion dans la partie hyperbolique du système, afin d'obtenir un système elliptique et pouvoir appliquer une méthode de degré topologique. En passant à la limite sur la diffusion, puis sur le pas de discrétisation, on montre l'existence de flamme plane se propageant, en présence d'un spray polydispersé.


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (266 p.)
  • Annexes : Bibliogr. p. 257-165 et notes bibliographiques dans chaque article

Où se trouve cette thèse ?

  • Bibliothèque : Université Claude Bernard (Villeurbanne, Rhône). Service commun de la documentation. BU Sciences.
  • Disponible pour le PEB
  • Cote : T50/210/2002/104bis
  • Bibliothèque : Université Claude Bernard (Villeurbanne, Rhône). Service commun de la documentation. BU Sciences.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.