Contribution d'orbites périodiques diffractives à la formule de trace

par Luc Hillairet

Thèse de doctorat en Mathématiques

Sous la direction de Yves Colin de Verdière.

Soutenue en 2002

à l'Université Joseph Fourier (Grenoble) .

    mots clés mots clés


  • Résumé

    La formule de trace est un outil privilégié pour l'étude du problème spectral inverse puisqu'elle établit, sur une variété riemannienne compacte, une relation entre le spectre du laplacien et les longueurs des géodésiques périodiques. Cette thèse étend ce type de formule dans deux situations présentant des singularités ponctuelles. Dans ces deux cas, on commence par étudier l'équation des ondes et par établir la propagation des singularités associée. Sur une variété M de dimension 3, on place un potentiel Dirac en un point p. Cela revient à considérer une extension autoadjointe du laplacien, défini sur C[puissance infini](M\{p}), différente du laplacien riemannien de M. Le propagateur de l'équation des ondes associée est construit en faisant apparaître des diffractions successives au point p, ce qui donne alors la propagation des singularités. La formule de trace en découle ; on montre notamment que les courbes obtenues en suivant successivement un ou plusieurs lacets géodésiques joignant p à p donnent une contribution dont on calcule la partie principale. Sur une surface euclidienne à singularités coniques, il faut commencer par étendre la notion de géodésique en admettant le passage par les points coniques. Au voisinage d'une géodésique g, la géométrie locale de l'ensemble des géodésiques (éventuellement) diffractives dépend d'un nombre (appelé complexité classique) que l'on relie à la suite des angles de diffractions le long de g. On montre alors que la propagation des singularités se fait en suivant ces géodésiques généralisées. La trace fait alors apparaître la contribution de géodésiques périodiques diffractives dont on calcule la partie principale sous certaines hypothèses.


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 146 p.
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 143-146

Où se trouve cette thèse ?

  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire de Sciences.
  • Non disponible pour le PEB
  • Cote : TS02/GRE1/0066
  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire de Sciences.
  • Disponible pour le PEB
  • Cote : TS02/GRE1/0066/D
  • Bibliothèque : Institut Fourier. Bibliothèque.
  • Disponible pour le PEB
  • Cote : 28632
  • Bibliothèque : Université de Toulon (La Garde). Bibliothèque universitaire. Section Campus La Garde.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.