Prise en compte des conditions aux limites dans les équations hyperboliques non-linéaires

par Julien Vovelle

Thèse de doctorat en Mathématiques et informatiques. Mathématiques appliquées

Sous la direction de Thierry Gallouët.


  • Résumé

    Dans la première partie de ce travail est analysée l'influence des conditions aux limites sur la méthode Volume Fini, lorsque celle-ci est mise en oeuvre pour le calcul approché de la solution d'une équation hyperbolique non-linéaire posée sur un domaine borné : les données étant des fonctions mesurables bornées, on montre la convergence de la méthode Volume Fini vers la solution faible entropique du problème. La manière même dont sont prises en compte les conditions aux limites lors de l'implémentation de la méthode Volume Fini est discutée dans le deuxième chapitre, en s'appuyant sur l'analyse de trois situations rencontrées dans un contexte industriel. On donne ensuite une estimation, dans l'espace L1, de l'erreur commise en faisant une approximation de la solution faible entropique par la solution d'un problème de diffusion avec viscosité petite. Dans le quatrième chapitre est analysée l'influence des conditions aux limites sur l'intégrabilité éventuelle de la solution et exposée une théorie L1 des lois de conservation sur domaine borné. Les outils développés dans le premier chapitre sont ensuite appliqués à l'étude des équations paraboliques dégénérées posées sur domaine borné. On définit une notion de solution entropique pour un problème avec conditions aux limites non-homogènes, puis on prouve la convergence de la méthode Volume Fini. Les deux derniers chapitres sont consacrés à l'analyse, d'un point de vue théorique et numérique, d'une loi de conservation avec coefficient discontinu ainsi qu'à l'étude d'une approximation non locale d'une loi de conservation.

  • Titre traduit

    Boundary conditions in non-linear hyperbolic equations


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : VI-241 p.
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. en fin de chapitres

Où se trouve cette thèse ?

  • Bibliothèque : Université d'Aix-Marseille (Marseille. St Charles). Service commun de la documentation. Bibliothèque universitaire de sciences lettres et sciences humaines.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.