Modélisation et simulation numérique des écoulements diphasiques

par Nicolas Seguin

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Jean-Marc Hérard.


  • Résumé

    On s'interesse dans ce travail à la simulation des écoulements diphasiques. Différents modèles, tous hyperboliques, sont considérés suivant les configurations étudiées. Dans un premier temps, plusieurs schémas Volumes Finis sont comparés pour l'approximation du modèle HEM (Homogeneous Equilibrium Model), notamment en présence de faibles densités. Ensuite on démontre l'existence et l'unicité de la solution faible entropique d'une loi de conservation scalaire gouvernant l'évolution de la saturation d'un écoulement diphasique dans un milieu poreux. On propose alors deux schémas Volumes Finis tenant compte du caractère résonnant de cette équation. La troisième partie concerne les écoulements en eaux peu profondes et l'approximation des termes sources raides. Une méthode pemettant le maintien d'états au repos ainsi que le recouvrement et l'apparition de zones sèches, est présentée et comparée aux méthodes habituellement utilisées dans l'industrie. Enfin, une classe de modèles hyperboliques non conservatifs se basant sur l'approche bifluide à deux vitesses et deux pressions est proposée. Une étude des solutions discontinues du système convectif permet d'exhiber une classe de fermetures sur la vitesse interfaciale et sur la pression interfaciale, tout en permettant de définir de manière unique les produits non conservatifs. L'approximation se fait à l'aide d'une méthode de "splitting" d'opérateur. On utilise deux schémas Volumes Finis, le schéma de Rusanov et le schéma de Godunov approché VFRoe-ncv pour l'étape de convection. Plusieurs cas tests sont présentés et commentés : tubes à choc, conditions limites de paroi, robinet d'eau, sédimentation

  • Titre traduit

    Modeling and numerical simulation of two-phase flows


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : V-263 p.
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 10-11 et en fin de chapitres

Où se trouve cette thèse ?

  • Bibliothèque : Université d'Aix-Marseille (Marseille. St Charles). Service commun de la documentation. Bibliothèque universitaire de sciences lettres et sciences humaines.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.