Problèmes statistiques pour des modèles à variables latentes : propriétés asymptotiques de l'estimateur du maximum de vraisemblance

par Randal Douc

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Christian P. Robert et de Éric Moulines.

Soutenue en 2001

à Palaiseau, Ecole polytechnique .

Le président du jury était Elisabeth Gassiat.

Le jury était composé de Christian Francq, François Legland.

Les rapporteurs étaient Bernard Prum, Ya'acov Ritov.


  • Résumé

    Un modèle autorégressif à régime markovien est un processus à temps discret à deux composantes x n, y n évoluant de la façon suivante : x n est une chaine de Markov homogène et y n suit une loi conditionnelle dépendante non seulement de x n mais aussi de y n 1, , y n 8. Le processus x n, usuellement appelé régime n'est pas observé et l'inférence doit être menée à partir du processus observable y n. Ces modèles incluent en particulier les modèles de chaines de Markov cachées utilisés en reconnaissance de la parole, économétrie, neuro-physiologie ou analyse des séries temporelles. Dans ce travail, nous prouvons consistance et normalité asymptotique de l'estimateur de maximum de vraisemblance dans le cas où les variables aléatoires cachées vivent dans un espace compact non nécessairement fini. Nous investissons deux techniques différentes, la première appliquée aux modèles de Markov cachées utilise l'ergodicité géométrique de certaines chaines de Markov étendues, et s'appuie sur une méthode proposée par Legland et Mevel (1997) dans le cas où les x k prennent un nombre fini de valeurs. Bien que cette technique semble adaptée à l'étude des estimateurs récursifs (ou l'estimateur est réévalue à chaque nouvelle observation), sa mise en oeuvre nécessite néanmoins des hypothèses relativement fortes. Une seconde approche que nous avons directement applique aux modèles autorégressifs non-linéaires a régime markovien utilise des approximations par des suites stationnaires et permet de prouver consistance et normalité asymptotique sous des hypothèses plus faibles


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (191 p.)
  • Annexes : Bibliogr. p. 123-124, 98 réf.

Où se trouve cette thèse\u00a0?

  • Bibliothèque : École polytechnique. Bibliothèque Centrale.
  • Disponible pour le PEB
  • Bibliothèque : École polytechnique. Bibliothèque Centrale.
  • Disponible pour le PEB
  • Cote : A1B 112/2001/DOU

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2001EPXXO001
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.