Nanotubes de nitrure de Bore : produits par chauffage laser non-ablatif : synthèse, caractérisation et mécanismes de croissance

par Thomas Laude

Thèse de doctorat en Physique

Sous la direction de Bernard Jouffrey.


  • Résumé

    Le faisceau d'un laser CO2, continu et de basse puissance (40-80 W), focalisé sur une cible de nitrure de bore (BN) hexagonal, n'induit pas d'ablation, mais un gradient de température stable, radial le long de la surface avant. Un tel chauffage, sous basse pression d'azote, produit une croissance macroscopique de nano-tubes de BN. Les tubes croissent sur un anneau autour de l'impact, formant une couronne de tubes enchevêtrés perpendiculaire à la surface de la cible. Cette méthode est efficace pour synthétiser des nano-tubes de BN ainsi que des nano-particules sphériques de BN, souvent riches en bore. Les tubes sont extrêmement longs (mesurés jusqu'à 120 microns), fins (typiquement 2 a 4 couches) et souvent assemblés en cordes. Dans les tubes, le BN est stœchiométrique, et bien cristallisé. Les particules sphériques sont des oignons facettés de nitrure de bore, contenant souvent un nano-cristal de bore à l'intérieur de leur cavité. La méthode de synthèse est simple et peu coûteuse. La croissance se produit à température élevée, mais pas directement depuis les plaquettes de h-BN. Après dissociation puis évaporation, le bore condense dans l'atmosphère d'azote, en formant les particules sphériques riches en bore, qui se déposent autour de l'impact. Le bore se recombine ensuite avec l'azote gazeux si et seulement si le bore est liquide; d'où une croissance sur un anneau de température déterminée. En formant des coquilles de BN, certaines particules sphériques évoluent vers des extrusions tubulaires. L'évolution d'une particule sphérique vers un tube peut être entraînée par la chute de sa température. Un gradient de température se forme le long du tube, essentiellement à cause du rayonnement thermique. Le gradient décroît exponentiellement avec la longueur du tube, de l'ordre de 200 K, sur une distance de quelques dizaines de microns. La vitesse de croissance diminue aussi rapidement avec la longueur de tube. Elle est de l'ordre de 10 µm/s en début de croissance.

  • Titre traduit

    Boron nitride nanotubes grown by non-ablative laser heating : synthesis, characterisation and growth processes


  • Résumé

    The beam of a CO2 laser, both continuous and low power (40-80 W), focused on a hexagonal boron nitride (h-BN) target (hot pressed powders), induces no ablation, but a stable temperature gradient, radial along target surface. Such a heating, in low nitrogen pressure, produces a macroscopic growth of BN nano-tubes. Tubes grow on a ring around impact, forming a crown of entangled tubes, perpendicular to target surface. This method is efficient to synthesise BN nano-tubes and other nano-spherical BN particles, often rich in boron. Tubes are extremely long (measured up to 120 microns), mostly thin (typically 2 to 4 layers) and self-assembled in ropes. In a tube, BN is stoichiometric and well crystallised. Spherical particles are faceted BN onions, often containing a boron nano-crystal inside their cavity. The synthesis method is simple and low cost. Quantity produced may be extended for commercial purposes, by scanning the laser beam (or the target), by using a higher laser power, or by collecting the material dropped from the target,. . . Growth occurs at bigh temperature but not directly from h-BN platelets. After dissociation and evaporation, boron condenses in nitrogen atmosphere, forming spherical particles, rich in boron, which spread around impact. Then, boron recombines with gaseous nitrogen if and only if boron is liquid, and hence, growth occurs on a ring of specific temperatures. While forming BN shells, some spherical particles evolve toward tubular extrusions. The evolution of a spherical particle toward a tube can be driven by its temperature decrease. A temperature gradient forms along the tube, essentially because of thermal radiation. The gradient is exponentially decreasing with tube length, by an order of 200 K over a few tens of microns. Growth speed also decreases quickly with tube length. It is of an order of 10 µm/s in the beginning of the growth.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (180 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. 210 réf.

Où se trouve cette thèse ?

  • Bibliothèque :
  • Non disponible pour le PEB
  • Cote : TH 61264
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.