Dégénérescences de sous-groupes discrets de groupes de Lie semisimples et actions de groupes sur des immeubles affines

par Anne Parreau

Thèse de doctorat en Sciences et techniques communes

Sous la direction de Frédéric Paulin.

Soutenue en 2000

à Paris 11 .

    mots clés mots clés


  • Résumé

    On etudie ici les degenerescences de representations fideles et discretes d'un groupe de type fini dans un groupe de lie semisimple reel g. On donne d'abord des proprietes fondamentales des immeubles de tits affines, les relations entre leurs differentes definitions apparaissant dans la litterature, et de nouvelles caracterisations pratiques. On demontre une classification de leurs isometries : elles fixent un point ou translatent une geodesique dans le complete. On donne la construction par les normes ultrametriques de l'immeuble de bruhat-tits du groupe lineaire gl n(f) sur un corps value f quelconque. On demontre qu'un sous-groupe de type fini de gl n(f), dont tout element fixe un point dans , admet un point fixe global dans le complete de. On considere ensuite l'espace x(, g) des classes de conjugaison de representations fideles et discretes de dans g, telles que les actions correspondantes de sur l'espace symetrique x = g/k n'admettent pas de point fixe global a l'infini. On definit le vecteur de translation d'un element g de g comme l'unique vecteur de longueur minimale adherent a l'ensemble des projections dans une chambre de weyl fermee fixee $$ de x des segments joignant un point de x a son image par g. On construit, par des methodes purement geometriques, une compactification de x(, g), induite par le spectre marque des vecteurs de translation, generalisant celle de thurston pour l'espace de teichmuller. On montre que les points du bord sont les spectres marques de vecteurs de translation soit de representations fideles et discretes de dans g ayant un point fixe global a l'infini dans x, soit d'actions de sur un immeuble affine, que l'on explicite. Lorsque est un groupe de surface et g = sl 3(r), ceci donne une compactification de la composante de hitchin de l'espace des modules de g-fibres plats sur la surface, dont on calcule explicitement le spectre marque des vecteurs de translation de certains points du bord.


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 120 p.
  • Annexes : 50 ref.

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Saclay. DIBISO. BU Orsay.
  • Disponible pour le PEB
  • Bibliothèque : Bibliothèque Mathématique Jacques Hadamard (Orsay, Essonne).
  • Disponible sous forme de reproduction pour le PEB
  • Cote : PARR
  • Bibliothèque : Centre Technique du Livre de l'Enseignement supérieur (Marne-la-Vallée, Seine-et-Marne).
  • Disponible pour le PEB
  • Cote : TH2014-014534

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université Grenoble Alpes (Saint-Martin d'Hères, Isère). Bibliothèque et Appui à la Science Ouverte. Bibliothèque universitaire Joseph-Fourier.
  • Non disponible pour le PEB
  • Cote : MF-2000-PAR
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.