Approximation de problèmes hyperboliques non linéaires, équations de Hamilton-Jacobi et applications

par Philippe Hoch

Thèse de doctorat en Sciences. Mathématiques

Sous la direction de Michel Rascle.

Soutenue en 2000

à Nice .


  • Résumé

    Cette thèse concerne d'une part l'approximation numérique de systèmes hyperboliques non-linéaires, et d'autre part les applications d'équations de Hamilton-Jacobi. Dans la première partie, on s'est intéressé à l'approximation numérique d'un exemple pathologique de p-système, pour lequel il existe des solutions périodiques en x et t, qui comportent de grands pics localisés près du centre d'ondes de compression centrées. Sur ce problème -et sur les équations d'Euler- nous avons testé les schémas de relaxation avec deux relaxations différentes, nous avons comparé systématiquement les résultats numériques avec les autres schémas classiques d'ordre élevé (supérieur ou égal à deux). Dans la deuxième partie, on a généralisé l'approche par ensemble de niveau à la Osher-Sethian pour la génération de maillage. Pour l'équation eikonale usuelle, on engendre ainsi la famille de courbes ct = {x ; d(x, co) = t}. L'idée est de faire avancer les points à vitesse Riemannienne constante sur le graphe d'une approximation d'une fonction z de manière à resserrer leurs projections dans la région où ce graphe est "raide". On étudie l'équation de Hamilton-Jacobi anisotrope sous-jacente ainsi que le problème stationnaire associé. Nous proposons des schémas, présentons et discutons des résultats numériques sur la génération de maillages et la détections de contours

  • Titre traduit

    Approximation of non-linear hyperbolic problems, Hamilton-Jacobi equations and applications


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 118 p.
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr.p.112-118

Où se trouve cette thèse ?

  • Bibliothèque : Université Nice Sophia Antipolis. Service commun de la documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : 00NICE5419
  • Bibliothèque : Université Nice Sophia Antipolis. Service commun de la documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : 00NICE5419bis
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.