Identification et approximation numérique de paramètres physiques pour un système parabolique semi-linéaire

par Abdelghani Roukbi

Thèse de doctorat en Sciences

Sous la direction de Jérôme Pousin.

Soutenue en 2000

à Lyon 1 .

Le jury était composé de Jérôme Pousin.


  • Résumé

    Dans ce travail nous présentons des méthodes numériques pour la résolution de problèmes inverses gouvernés par des équations aux dérivées partielles semi-linéaires couplées avec des termes non linéaires discontinus. Un premier résultat a été obtenu concernant l'identification du coefficient de diffusion lorsque le flux relargué est observé. En mesurant le flux sur une partie du bord de domaine nous montrons pour un problème de dissolution-diffusion que le coefficient de diffusion est identifiable et nous proposons un algorithme numérique adapté à la discontinuité du terme non linéaire pour le calculer. L'autre sujet de ce travail concerne l'identification d'un polluant en phase liquide pouvant s'évaporer. Un modèle macroscopique décrivant l'évaporation d'une substance organique volatile dans un milieu poreux est proposé. En considérant un modèle mathématique à double porosités, nous identifions la concentration initiale du polluant en phase liquide. Nous mettons en place une méthode basée sur un développement asymptotique qui permet d'identifier la concentration initiale du polluant en phase liquide, le coefficient de diffusion et le coefficient d'échange entre les phases liquide et gazeuse. Ce problème d'identification est considéré comme un problème de contrôle optimal qu'on résout à l'aide d'une approche Lagrangienne. La difficulté principale de tels problèmes réside dans la non-linéarité de la variable d'état par rapport au contrôle. Mentionnons qu'un inconvénient important de cette méthode est qu'elle est coûteuse en temps de calcul pour calculer les solutions approchées


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (136 p.)
  • Annexes : Bibliogr. p. 133-136

Où se trouve cette thèse ?

  • Bibliothèque : Université Claude Bernard (Villeurbanne, Rhône). Service commun de la documentation. BU Sciences.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.