Les réseaux de neurones pour la modélisation et la commande des procédés biotechnologiques

par Adriana Vasilache

Thèse de doctorat en Systèmes automatiques

Sous la direction de Boutaib Dahhou.

Soutenue en 2000

à Toulouse, INSA .


  • Résumé

    Dans ce travail nous réalisons une étude sur l'utilisation de réseaux de neurones pour la modélisation, la classification et la prédiction appliquées aux procédés de fermentation. Les modèles de type boîte noire (et nous classifions ici les réseaux de neurones) sont utiles pour la modélisation des procédés ou des phénomènes pour lesquels des modèles analytiques ne peuvent pas être déduits à partir de considérations physiques. Parmi les avantages des modèles neuronaux par rapport aux autres modèles boîte noire, nous mentionnons le fait qu'ils sont des approximateurs universels, leurs fonctions de base sont adaptatives, leur structure répétitive permet une facile implémentation logicielle et matérielle et ils ont la propriété de la régularisation implicite. Ceux-ci, combinés avec les caractéristiques de procédés biologiques (procédés non-linéaires et non-stationnaires dont la dynamique et peu connue), fournissent la raison pour laquelle les réseaux de neurones sont un outil très apprécié pour la modélisation des procédés biologiques, ou des procédés de fermentation, dans notre cas. Nous avons donc utilisé des structures de modèles neuronaux déjà existants et proposé aussi de nouvelles structures pour les cas ciblés de fermentations alcoolique et lactique. Nous présentons deux approches pour la caractérisation de la dynamique d’un procédé de fermentation: la modélisation du taux de croissance en biomasse, le paramètre dynamique principal du procédé et la caractérisation globale du type de la dynamique du procédé à l’aide d’un classifieur neuronal. Les deux approches sont testées en simulation et sur des données expérimentales pour une fermentation lactique et une fermentation alcoolique. La caractérisation globale de la dynamique d’un procédé de fermentation représente un outil potentiel pour la supervision des procédés en détectant les changements dans la dynamique du système où une aide à la modélisation des procédés de fermentation en mode discontinu. Nous avons considéré aussi la prédiction de la biomasse pour une fermentation en mode continu et les modèles neuronaux de prédiction ont été testés dans une stratégie de commande prédictive. Les résultats sont comparés avec la même stratégie prédictive mais utilisant une approche adaptative et l'approche neuronale a un succès incontestable pour les cas ou la dynamique du procédé change dans le temps. Finalement nous nous sommes intéressés à la prédiction du quotient respiratoire, proposant un modèle neuronal de prédiction. Il est réalisé en vue d'une commande prédictive du procédé pour la maintenance d'un certain régime de fonctionnement (oxydatif ou fermentaire)

  • Titre traduit

    Modeling and control of the biotechnological processes using neural networks


  • Résumé

    In this work we realize a study on the use of the neural nets for the modeling, classification and the control of fermentation processes. The black-box models (we consider a neural net like a black box model) are of great help for processes or phenomena modeling when analytical models cannot be deduced from physical considerations. Some of the advantages of the neural nets when compared to other black-box models are: they are universal approximators using a small number of parameters, their basis functions are adaptive, their repetitive structure permits an easy implementation both software and hardware and they have the property of implicit regularization. These, combined with the characteristics of the biological processes (which are non-linear, non-stationary processes whose dynamics isn’t entirely known), are the reason for which the neural nets are used for the modeling of such processes. We have thus used existing neural models and proposed new ones for the cases of lactic and alcoholic fermentations. We have presented two approaches for the characterization of the fermentation process dynamics: the modeling of the specific biomass growth rate, the most important dynamic parameter of a fermentation process and the global characterization of the process dynamics using a neural classifier. The two approaches have been tested in simulation and on real data for lactic or alcoholic fermentation processes. The use of a classifier of the process dynamics represents a potential tool for process supervision by means of detecting the changes in the process dynamics as well as an aid for the process modeling in the case of batch processes. The prediction of the biomass concentration has also been considered for a continuous fermentation process. The neural models have been tested in a predictive control strategy and compared with a similar strategy using adaptive modeling. The neural prediction has been an incontestable winner for the cases where the process dynamics changes in time. The last issue of our study has been the prediction of the respiratory quotient for a alcoholic fermentation for which we proposed a neural model. It has been proposed in view of a predictive control strategy for the maintenance of a certain regime (fermentative or oxidative)

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (xiii-123 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 117-123. Index

Où se trouve cette thèse ?

  • Bibliothèque : Institut national des sciences appliquées. Bibliothèque centrale.
  • Disponible pour le PEB
  • Cote : 2000/597/VAS
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.