Localisation spatiale par subdivision pour l'accélération des calculs en radiométrie : étude théorique et applications industrielles

par Jean-Christophe Roche

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Patrick Chenin.

Soutenue en 2000

à l'Université Joseph Fourier (Grenoble) .

    mots clés mots clés


  • Abstract

    La physique de la lumière ainsi que les outils géométriques pour la Conception Assistée par Ordinateur sont à la base des logiciels de simulation des phénomènes lumineux pour la fabrication des systèmes optiques. Ce n'est pas sans difficulté que les industriels conçoivent ces logiciels dont un des principaux handicaps est que les simulations sont très coûteuses en temps. L'objectif principal de ce travail est de rechercher et développer des algorithmes de calcul plus performants. Dans un premier temps, on décrit précisément le modèle du transport des photons dans ce contexte, composé de l'équation de Boltzmann accompagné de conditions de bord, et qui, dans le cas de milieux homogènes par morceaux, se ramène à l'équation de radiosité. Ensuite, on présente les outils géométriques utilisés dans le modeleur hybride CSG (Constructive Solid Geometry) et BRep (Boundary Representation) ainsi que les algorithmes de base nécessaires à la recherche d'intersections entre des demi-droites et des objets géométriques. Puis, un tour d'horizon des méthodes d'accélération des calculs en radiométrie par localisation spatiale est présenté. En tenant compte des contraintes industrielles, une telle méthode d'accélération est alors adaptée au contexte puis développée dans un environnement logiciel existant. Des expérimentations numériques montrent l'efficacité des nouvelles bibliothèques. Enfin, une étude théorique des complexités en temps et en mémoire liées aux méthodes de localisation spatiale, faisant intervenir les sommes de Minkowski d'ensembles géométriques, débouche sur une stratégie consistant à minimiser la complexité en temps pour choisir les paramètres de localisation


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol (xii-197 p.)
  • Annexes : Bibliogr. p. [191]-197, 89 réf.

Où se trouve cette thèse ?

  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire de Sciences.
  • Disponible pour le PEB
  • Bibliothèque : Moyens Informatiques et Multimédia. Information.
  • Disponible pour le PEB
  • Cote : IMAG-2000-ROC
  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie . Section Mathématiques-Informatique Recherche.
  • Disponible pour le PEB
  • Cote : THESE 06212
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.