Contributions a l'estimation de modeles conditionnellement heteroscedastiques et a l'etude de problemes de fiabilite dans un contexte de donnees doublement censurees

par YANN VERNAZ

Thèse de doctorat en Sciences et techniques communes

Sous la direction de Christian Lavergne.

Soutenue en 2000

à Grenoble 1 .

    mots clés mots clés


  • Pas de résumé disponible.


  • Pas de résumé disponible.


  • Résumé

    La premiere partie de ce travail est consacree a l'etude des modeles conditionnellement heteroscedastiques a temps discret. Son but principal est de fournir des methodes d'estimation lorsque l'hypothese habituelle de loi conditionnelle gaussienne est relachee, ceci dans un cadre parametrique puis non parametrique. Pour ce faire nous proposons une methode fondee sur la notion de quasi-vraisemblance. Celle-ci associee a une procedure adaptative permet d'obtenir un algorithme d'estimation performant. L'approche presentee s'adapte a un grand nombre de modeles, comme par exemple les modeles arch. Dans le contexte non parametrique, les fonctions iconnues sont estimees par la methode les polynomes locaux avec un choix de fenetre adaptatif. Les experimentations numeriques sur des donnees reelles et simulees confirment le bon comportement pratique des approches proposees. La seconde partie traite de deux problemes d'inference statistique, issus d'applications reelles, pour des modeles de durees de vie. L'originalite est que les seules donnees disponibles sont censurees a droite ou a gauche. Nous precisons les difficultes theoriques et pratiques rencontrees, et decrivons des methodes d'estimation susceptibles d'etre appliquees.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 182 p.
  • Annexes : 130 ref.

Où se trouve cette thèse ?

  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire de Sciences.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.