Contribution a l'étude des équations différentielles à retard avec impulsions : Approche par la théorie des semigroupes intégrés.

par Mostafa Bachar

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Ovide Arino.

Soutenue en 1999

à Pau .


  • Résumé

    La thèse étudie les équations à retard avec impulsions. Par impulsion, on entend un changement brusque de l'état d'un système, soit, au niveau de la variable d'état du système, soit à celui de l'équation définissant le système. Ici, nous nous limitons au premier cas et nous supposons qu'à chacun des instants d'une suite, bornée ou non d'instants, l'état passe d'une position à une autre, par suite d'une transformation qui ne dépend que du moment d'impulsions. Nous explorons d'abord un modèle provenant de la biologie. La théorie développée dans ce travail nous permet d'étudier la stabilité via la méthode de Lyapunov, pour une équation différentielle ordinaire avec impulsions, et de généraliser la formule de la variation de la constante établie antérieurement par O. Arino et I. Gyori pour une classe d'équations différentielles à retard particulière avec impulsions. Nous discutons ensuite la stabilité. Nous travaillons dans le cadre des équations à retard, essentiellement dans le cas linéaire. Nous élaborons une théorie générale des équations à retard avec impulsions en nous appuyant sur : 1) la théorie de l'extrapolation (qui permet de passer d'une équation non autonome à une équation autonome) ; 2) la théorie des semi-groupes intégrés cette dernière permet d'éliminer l'effet des discontinuités produites par les impulsions sur le semi-groupe. Enfin, on donne un autre résultat d'existence de solutions périodiques en nous appuyant sur la méthode des sur et sous-solutions.


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (181 p.)
  • Notes : Reproduction de la thèse autorisée
  • Annexes : Bibliogr. p.172-181

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Pau et des Pays de l'Adour. Service Commun de la Documentation. Section Lettres.
  • Disponible pour le PEB
  • Cote : US 17204

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 1999PAUU3028
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.