Etude du couplage d'une onde electromagnetique sur une structure complexe par decomposition en sous-domaines

par David Lacour

Thèse de doctorat en Physique

Sous la direction de VINCENT GOBIN.

Soutenue en 1999

à Paris 11 .

    mots clés mots clés


  • Résumé

    Dans le domaine de la compatibilite electromagnetique, la complexite des systemes agresses et l'augmentation de la frequence des sources perturbatrices rendent difficile l'etude d'un probleme complexe dans son integralite. Une solution consiste a decomposer le probleme global en sous-domaines. La resolution de chaque sous-domaine se fait alors de maniere independante en utilisant la methode de simulation de son choix. Dans cette etude, une premiere methode basee sur l'application du principe de reciprocite a ete developpee. Elle est destinee a l'etude du couplage d'une onde a travers une ouverture et permet de supprimer les erreurs obtenues lorsque l'on utilise une methode du type equation integrale en champ electrique dans le cas d'un couplage faible. De plus, l'utilisation combinee de cette nouvelle methode avec la theorie des dipoles permet de decoupler parfaitement le probleme exterieur du probleme interieur. Nous presentons ensuite un principe de decoupage general multi-domaines, multi-methodes. Il consiste a decomposer un objet en sous-volumes. Chaque sous-volumes est ensuite caracterise independamment des autres a l'aide d'une matrice admittance reliant les traces des champs electrique et magnetique sur les ouvertures. La reponse globale de l'objet est obtenue par la resolution d'une equation de reseau construite a partir du graphe du decoupage et de toutes les matrices admittance. Ce principe de decoupage a ete valide et applique a differentes methodes de simulation numeriques : la methode des differences finies temporelle (fdtd), la methode des volumes finis temporelle (fvtd) et la methode de l'equation integrale en champ electrique (efie).


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 252 p.
  • Annexes : 108 ref.

Où se trouve cette thèse ?

  • Bibliothèque :
  • Disponible pour le PEB
  • Bibliothèque :
  • Disponible pour le PEB
  • Cote : TH2014-014387
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.