Programmation bayésienne des robots

par Olivier Lebeltel

Thèse de doctorat en Sciences cognitives

Sous la direction de Emmanuel Mazer et de Pierre Bessière.

Soutenue en 1999

à Grenoble INPG , en partenariat avec Laboratoire Leibniz (Grenoble) (laboratoire) .


  • Résumé

    Cette thèse propose une méthode originale de programmation de robot fondée sur l'inférence et l'apprentissage bayésien. Cette méthode traite formellement des problèmes d'incertitude et d'incomplétude inhérents au domaine considéré. En effet, la principale difficulté de la programmation des robots vient de l'inévitable incomplétude des modèles utilisés. Nous exposons le formalisme de description d'une tâche robotique ainsi que les méthodes de résolutions. Ce formalisme est inspiré de la théorie du calcul des probabilités, proposée par le physicien E. T. Jaynes : "Probability as Logic". L'apprentissage et les techniques de maximum d'entropie traduisent l'incomplétude en incertitude. L'inférence bayésienne offre un cadre formel permettant de raisonner avec cette incertitude. L'apport principal de cette thèse est la définition d'un système générique de programmation pour la robotique et son application expérimentale. Nous l'illustrons en utilisant ce système pour programmer une application de surveillance pour un robot mobile : le Khepera. Pour cela, nous utilisons des ressources génériques de programmation appelées "descriptions". Nous montrons comment définir et utiliser de manière incrémentale ces ressources (comportements réactifs, fusion capteur, reconnaissance de situations et séquences de comportements) dans un cadre systématique et unifié. Nous discutons des différents avantages de notre approche : expression des connaissances préalables, prise en compte et restitution de l'incertitude, programmation directe et inverse. Nous proposons des perspectives à ce travail : choix d'architecture et planification. Nous situons notre travail dans un cadre épistémologique plus vaste en opposant, dans le cadre de la robotique autonome, l'approche "classique" relevant de la "cognition de haut niveau" et l'approche "réactive" associée à une "cognition de bas niveau". Nous montrons finalement comment nos travaux proposent de faire le lien entre ces deux extrêmes


  • Résumé

    This thesis proposes an original method for robotic programming based on bayesian inference and learning. This method formally deals with problems of uncertainty and incomplete information that are inherent to the field. Indeed, the principal difficulties of robot programming comes from the unavoidable incompleteness of the models used. We present the formalism for describing a robotic task as well as the resolution methods. This formalism is inspired by the theory of the probability calculus, suggested by the physicist E T Jaynes: "Probability as Logic". Learning and maximum entropy principle translates incompleteness into uncertainty. The main contribution of this thesis is the definition of a generic system of robotic programming and its experimental application. We illustrate it by programming a surveillance task with a mobile robot: the Khepera. In order to do this, we use generic programming resources called "descriptions". We show how to define and use these resources in an incremental way (reactive behaviors, sensor fusion, situation recognition and sequences of behaviors) within a systematic an unified framework. We discuss the various advantages of our approach: statement of preliminary knowledge, taking into account uncertainty, direct and inverse programming. We suggest perspectives for our work: choice of architecture and planning. We place our work within a wider epistemological horizon while opposing, within the framework of autonomous robotics, the "traditional" approach concerning "high level cognition" and the "reactive" approach associated with the "low level cognition". We finally show how our work proposes to establish a link between these two extremes

Autre version

Cette thèse a donné lieu à une publication en 2006 par [CCSD] à Villeurbanne

Programmation bayésienne des robots

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (259 p.)
  • Annexes : 219 ref.

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Grenoble Alpes (Saint-Martin d'Hères, Isère). Bibliothèque et Appui à la Science Ouverte. Bibliothèque universitaire Joseph-Fourier.
  • Disponible pour le PEB

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 1999INPG0126
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.