Utilisation des réseaux de neurones artificiels pour la commande d'un véhicule autonome

par Eric Gautier

Thèse de doctorat en Informatique. Systèmes et communications

Sous la direction de Philippe Jorrand.

Soutenue en 1999

à Grenoble INPG .


  • Résumé

    Le sujet de cette thèse se situe à l'intersection des domaines de la robotique mobile et des réseaux de neurones artificiels (RNA). Notre objectif est d'étudier les solutions que peuvent apporter les techniques connexionnistes aux problèmes particuliers posés par la commande automatique d'un robot de type voiture. Ce mémoire se compose de deux parties principales. La première d'entre elles traite des aspects fondamentaux de la commande d'un robot mobile et de l'utilisation des réseaux de neurones artificiels pour la commande de systèmes complexes. Cette première étude nous permet de mettre en évidence les différents points sur lesquels les réseaux de neurones peuvent jouer un rôle dans une architecture de commande conférant une véritable autonomie de mouvements au véhicule, tout en respectant les contraintes de robustesse et de rapidité de réaction induites par l'utilisation d'un robot de la taille et de la vitesse d'une voiture. Nous proposons dans la deuxième partie du mémoire plusieurs contrôleurs permettant d'accroître progressivement l'autonomie du robot. Nous nous intéressons tout d'abord à une tâche simple consistant uniquement à asservir le robot sur une trajectoire de référence issue d'un planificateur. Notre approche autorise une adaptation continue du système face à d'éventuels changements des paramètres du robot ou de son environnement. Afin de permettre la réalisation de manoeuvres sans consignes extérieures, nous proposons également une méthodologie pour la réalisation de contrôleurs basés sur l'utilisation des capteurs externes du véhicule. Notre appoche utilise un modèle alliant des caractéristiques issues de la logique floue et des RNA. Enfin nous montrons comment des tâches complexes peuvent être réalisées à partir de l'enchaînement de plusieurs contrôleurs simples. Notre réalisation du système de sélection de ces contrôleurs, utilisant un RNA récurrent, possède des capacités de robustesse et autorise des réactions très rapides face à l'ensemble des événements extérieurs qui doivent pouvoir être pris en compte.

  • Titre traduit

    Artificial neural networks for control of an autonomous vehicle


  • Résumé

    The subject of this thesis covers both mobile robotic and artificial neural networks (ANN) fields. Our aim is to study solutions that connectionist techniques can bring to particular problems raised by the automatic control of a car-like vehicle. This report is composed of two main parts. The first of them processes fundamental aspects of mobile robot control and of the use of artificial neural networks for control of complex systems. This first study allows us to underline the different points where ANN can contribute in a control architecture providing a real autonomy to the vehicle while respecting the robustness and rapidity constraints induced by the utilisation of a robot of the size and the speed of a car. We propose in the second part of this report several controllers allowing gradual increase of the robot autonomy. First of all, we are interested in a simple task consisting only in enslaving the robot on a reference path given by a planner. Our approach enables a continuous adaptation of the system facing possible changes of the parameters of the robot or its environment. So as to allow the execution of manoeuvres without external orders, we also propose a methodology for the realisation of controllers based on external sensors of the vehicle. Our approach uses a model allying characteristics from both fuzzy logic and ANN. Finally we show how complex tasks can be realised using a sequence of several simple controllers. Our realisation of the selection system for these controllers, which uses a recurrent ANN, exhibits some characteristics of robustness and very fast reactions when faced to the external events that must be taken into account.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (207 p.)
  • Annexes : 170 REF.

Où se trouve cette thèse ?

  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire de Sciences.
  • Disponible pour le PEB

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire de Sciences.
  • Non disponible pour le PEB
  • Cote : IMAG-1999-GAU
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.