Analyses factorielles des distributions marginales de processus

par Rachid Boumaza

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Bernard Ycart.

Soutenue en 1999

à Grenoble 1 .

    mots clés mots clés


  • Résumé

    On définit la mesure d'affinité de deux densités de probabilité de p-vecteurs aléatoires par le produit scalaire de ces deux densités dans l'espace des fonctions de carré intégrable. On la calcule pour différents types de densités. On présente les propriétés asymptotiques de cette mesure d'affinité dans le cas de densités gaussiennes ; on montre en particulier la normalité asymptotique de cette mesure lorsque les paramètres de ces densités sont estimés par le maximum de vraisemblance. On utilise cette mesure d'affinité pour définir l'analyse en composantes principales de T densités de probabilité (ou des fonctions caractéristiques associées) avec l'objectif d'apprécier l'évolution de ces densités en les visualisant dans des espaces de dimension réduite. On en montre les liens avec la méthode Statis Dual (sur matrices de variance) et on en propose une estimation convergente. On montre les représentations obtenues sur des données de cardiologie et sur des données de processus gaussiens en en faisant varier les paramètres. Aux densités précédentes indicées par t (t=1,. . . ,T) on ajoute une variable qualitative Y définie sur l'ensemble des indices. Cette variable engendrant une partition des densités en Q catégories, on définit l'analyse discriminante de ces densités et on propose quatre règles d'affectation d'une nouvelle densité gaussienne à l'une des Q catégories. Deux règles sont de type probabiliste (vraisemblance maximale) et s'appuient sur le caractère asymptotiquement gaussien de la mesure d'affinité ; deux règles sont de type géométrique (distance minimale) et s'appuient sur la distance induite par la mesure d'affinité. On applique cette méthode à des données archéologiques (mesures de pierres de châteaux d'Alsace), l'objectif étant de dater ces châteaux

  • Titre traduit

    Factor analysis of processes marginal distribution


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (131 p.)
  • Annexes : Bibliogr. p. 123-127

Où se trouve cette thèse ?

  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire de Sciences.
  • Disponible pour le PEB
  • Bibliothèque : Moyens Informatiques et Multimédia. Information.
  • Disponible pour le PEB
  • Cote : IMAG-1999-BOU
  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie . Section Mathématiques-Informatique Recherche.
  • Disponible pour le PEB
  • Cote : THESE 00937
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.