Eléments de géométrie tressée

par Anani Akueson

Thèse de doctorat en Mathématique

Sous la direction de Dimitri Gourevitch.

Soutenue en 1998

à Valenciennes .


  • Résumé

    Notre thèse est consacrée à la géométrie tressée, en particulier celle qui traite des objets munis d'un opérateur de Yang-Baxter (YB) (autrement dit, une solution de l'équation de Yang-Baxter quantique (EYBQ). Dans la première partie, sont étudiées certaines structures géométriques sur l'hyperboloïde quantique (une déformation de l'hyperboloïde classique). Les critères de raison d'être de tous les objets introduits sont de deux types : invariance par rapport à l'action du groupe quantique correspondant et platitude de la déformation (cela signifie simplement que la quantité d'éléments reste inchangé lors de la déformation). Nous introduisons le module tangent sur hyperboloïde quantique et montrons qu'il est projectif et muni d’une ancre quantique (i. E. Une action de ce module sur l'espace des fonctions sur l'hyperboloïde quantique). Une métrique et une connexion tressées ont été définies et leurs existences sont montrées. Une version d'un complexe de de Rham sans règle de Leibniz est construite et sa cohomologie est calculée sur l'hyperboloïde quantique. L'objectif principal de la deuxième partie est de décrire l'analogue du groupe quantique de Drinfel'd-Jimbo lié aux solutions non quasiclassiques (i. E. Celles qui ne sont pas des déformations de la volte habituelle) de l'EYBQ. Cela se fait par le biais de l'algèbre des fonctions quantiques correspondantes pour laquelle, il est montre qu'il existe un couplage (canonique), coordonné avec les structures d'algèbres et de coalgèbres. On a montré que, pour les solutions de l'équation de YB liées aux algèbres de type Temperly-Lieb, ce couplage est non dégénéré sur son espace générateur. Cela renforce l'hypothèse selon laquelle les groupes quantiques lies a ces algèbres coïncident avec leurs duaux.

  • Titre traduit

    Elements of braided geometry


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (72 p.)
  • Annexes : Bibliographie. p.71-72

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Polytechnique Hauts-de-France. Service commun de la documentation. Site du Mont Houy.
  • Disponible sous forme de reproduction pour le PEB
  • Cote : 904333 TH

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université Grenoble Alpes (Saint-Martin d'Hères, Isère). Bibliothèque et Appui à la Science Ouverte. Bibliothèque universitaire Joseph-Fourier.
  • Non disponible pour le PEB
  • Cote : MF-1998-AKU
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.