La formule du caractère au voisinage des éléments semi-simples pour un groupe de Lie résoluble presque algébrique sur un corps p-adique

par Khemais Maktouf

Thèse de doctorat en Mathématiques

Sous la direction de Pierre Torasso.

Soutenue en 1998

à Poitiers .


  • Pas de résumé disponible.


  • Pas de résumé disponible.


  • Résumé

    Nous donnons une description globale des caracteres des representations unitaires irreductibles des groupes de lie resolubles presque algebriques sur un corps p-adique. Pour ce faire, nous etablissons une formule du caractere au voisinage des elements semi-simples. On commence par demontrer la formule du caractere au voisinage de l'element neutre. Notre demonstration se fait par recurrence sur la dimension du groupe g. On se ramene a faire des calculs explicites dans le cas ou le radical unipotent de g est un groupe de heisenberg. De fait, nous sommes capables de demontrer la formule du caractere dans le cadre plus general que voici : on suppose que le radical unipotent de g est de heisenberg, tel que son centre soit le centre du groupe g. Pour demontrer, dans cette situation, la formule du caractere au voisinage de l'element neutre, nous sommes amenes a demontrer un resultat, qui est la version p-adique d'un resultat bien connu de kirillov. Pour obtenir la formule du caractere au voisinage d'un element semi-simple quelconque, nous avons utilise la methode de descente de harish-chandra. Pour ce faire, nous avons du etendre au cas des groupes presque algebriques sur un corps p-adique, les resultats concernant les restrictions des fonctions generalisees invariantes dus a harish-chandra dans le cas algebrique reductif et a m. Duflo et m. Vergne dans le cas presque algebrique reel. Comme application de notre formule pour l'extension de la representation de schrodinger du groupe de heisenberg au produit semi-direct avec le groupe metaplectique, nous donnons une formule explicite pour le caractere de la representation metaplectique (ou de weil) et de ses composantes irreductibles.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (102 p.)
  • Annexes : Bibliogr. p. 101-102. 44 réf.

Où se trouve cette thèse ?

  • Bibliothèque : Université de Poitiers. Service commun de la documentation. Section Sciences, Techniques et Sport.
  • Disponible pour le PEB
  • Cote : TS 98/POIT/2279
  • Bibliothèque : Université de Poitiers. Service commun de la documentation. Section Sciences, Techniques et Sport.
  • Disponible pour le PEB
  • Bibliothèque : Université de Poitiers. Département de mathématiques. Bibliothèque.
  • Disponible pour le PEB
  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie . Section Mathématiques-Informatique Recherche.
  • Disponible pour le PEB
  • Cote : THESE 06843
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.