Propriétés arithmétiques de la fonction d’Euler et généralisations

par Frédéric Marie-Jeanne

Thèse de doctorat en Mathématiques

Sous la direction de Gérald Tenenbaum.

Soutenue en 1998

à Nancy 1 .


  • Résumé

    Pour tout nombre entier n, nous désignons par E(n) (resp. E*(n)) le nombre des facteurs premiers de Φ(n) comptes avec (resp. Sans) multiplicité, où Φ est la fonction indicatrice d’Euler. La première partie est consacrée à la preuve de deux conjectures relatives à la concentration des quantités E(n) et E*(n). Dans la seconde partie, nous présentons des majorations quantitatives de valeurs moyennes de fonctions multiplicatives. Ces estimations sont appliquées dans la troisième partie à une étude effective, par une méthode d'intégration complexe, des lois de répartition d'une classe de fonctions additives liées aux nombres premiers translatés. La quatrième et dernière partie est dévolue à la résolution d'une conjecture concernant la répartition globale des valeurs de E*(n).

  • Titre traduit

    Arithmetical properties of the Euler’s function and generalizations


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (120 p.)
  • Notes : Publication autorisée par le jury.
  • Annexes : 34 références

Où se trouve cette thèse ?

  • Bibliothèque : Université de Lorraine (Villers-lès-Nancy, Meurthe-et-Moselle). Direction de la Documentation et de l'Edition - BU Sciences et Techniques.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.