Feuilletages minimaux sur les surfaces non compactes

par Jean Christophe Beniere

Thèse de doctorat en Sciences

Sous la direction de Gilbert Hector.

Soutenue en 1998

à Lyon 1 .

Le jury était composé de Gilbert Hector.


  • Résumé

    Un feuilletage f d'une surface non compacte est dit minimal si la surface est le seul ensemble minimal du feuilletage c'est a dire le f, $$l =. Une surface planaire (de genre nul) ne peut pas admettre de feuilletages minimaux ; par contre toute surface non planaire en possede et on montre a l'aide de constructions explicites qu'une telle surface possede des feuilletages minimaux qui sont definis par des formes fermees.


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (iii-93 p.)
  • Annexes : Bibliogr. p. 91-93

Où se trouve cette thèse ?

  • Bibliothèque : Université Claude Bernard (Villeurbanne, Rhône). Service commun de la documentation. BU Sciences.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.