Sur les representations induites d'elliptiques d'un groupe reductif p-adique

par KAREM BETTAIEB

Thèse de doctorat en Mathématiques

Sous la direction de PAUL GERARDIN.

Soutenue en 1997

à Paris 7 .

    mots clés mots clés


  • Résumé

    Dans la premiere partie de cette these, on etudie les representations temperees de g(f), ou g(f) est un groupe reductif defini sur un corps local non archimedien f. Il y a deux familles de representations irreductibles temperees de g. La premiere est la famille constituee des representations irreductibles elliptiques, dont leurs caracteres est non nuls sur l'ensemble regulier elliptique de g(f). La seconde est la famille constituee des representations irreductibles essentielles, ceux qui ne sont pas proprement irreductibles par induction parabolique. D'apres les resultats de harish-chandra, chaque representation irreductible temperee provient d'une representation induite i#p() ou est une representatison de carre integrable du sous-groupe de levi m(f) du parabolique p(f). Le premier resultat est que si est essentiel alors le r-groupe r# de est essentiel, c. A. D. Que l'ensemble des points dans a#m fixes par r# est a#g. Aussi on prouve que si est non elliptique alors est combinaison lineaire de representations proprement induites d'elliptiques. C'est resultats sont bien connu lorsque f = r, mais c'est nouveau lorsque f est p-adique. La seconde partie est reservee a l'etude des representations temperees de sl(n). On montre que chaque representation irreductible temperee de sl(n) est irreductiblement induite d'une essentielle. Dans le cas general on sait que toute representation elliptique est essentielle. Dans le cas de sl(n) on donnera une classification des representations essentielles non elliptiques.


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (29, 26 f.)
  • Annexes : 37 réf.

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque Universitaire des Grands Moulins.
  • Accessible pour le PEB
  • Cote : TS1997
  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie . Section Mathématiques-Informatique Recherche.
  • Disponible pour le PEB
  • Cote : THESE 00706
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.