Super-mouvement brownien, serpent brownien et équations aux dérivées partielles

par Jean-Stephane Dhersin

Thèse de doctorat en Mathématiques

Sous la direction de Jean-François Le Gall.

Soutenue en 1997

à Paris 6 .

    mots clés mots clés


  • Pas de résumé disponible.


  • Pas de résumé disponible.


  • Résumé

    Le super-mouvement brownien est un processus de markov a valeurs mesures. Une motivation pour l'etude de ce processus est que l'on peut exprimer de maniere simple les solutions positives de certaines equations aux deriveees partielles semilineaires, elliptiques ou parabolliques, a partir de ses fonctionnelles de laplace. Apres avoir rappele une construction du super-mouvement brownien a l'aide du serpent brownien, nous demontrons certaines proprietes trajectorielles de ce dernier. Nous donnons des conditions sur la regularite de domaines pour qu'il y ait existence, ou unicite, sur ces domaines de solutions de ces equations aux deriveees partielles, avec explosion a la frontiere. Enfin, l'etude du serpent brownien permet d'obtenir des informations sur le comportement du support du super-mouvement brownien.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (103 f.)
  • Annexes : Bibliogr. (p. 100-103)

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie . Section Mathématiques-Informatique Recherche.
  • Disponible pour le PEB
  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie . Section Mathématiques-Informatique Recherche.
  • Disponible pour le PEB
  • Cote : THESE 01845
  • Bibliothèque : Centre Technique du Livre de l'Enseignement supérieur (Marne-la-Vallée, Seine-et-Marne).
  • Disponible pour le PEB
  • Cote : PMC RT P6 1997
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.