Réalisabilité locale des structures de Cauchy-Riemann rigides de R3, dans les classes Hölderiennes

par Abderrabi Maati

Thèse de doctorat en Mathématiques

Sous la direction de Gérard Cœuré.

Soutenue en 1997

à Lille 1 .


  • Résumé

    Nous montrons que dans r, les structures de Cauchy-Riemann rigides et appartenant a une classe hölderienne d'exposant non entier sont réalisables sur une hypersurface rigide de c2 par un difféomorphisme qui appartient a la même classe hölderienne.

  • Titre traduit

    Local realizability of rigid cauchy-riemann structures of r3, in holder class


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (20 f.)
  • Annexes : Bibliogr. f. 20

Où se trouve cette thèse ?

  • Bibliothèque : Université des sciences et technologies de Lille (Villeneuve d'Ascq, Nord). Service commun de la documentation.
  • Disponible pour le PEB
  • Cote : 50376-1997-353

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire de Sciences.
  • Non disponible pour le PEB
  • Cote : MF-1997-MAA
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.