Une méthode de domaines fictifs pour la modélisation des structures rayonnantes tridimensionnelles

par Sylvain Garces

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Patrick Joly.

Soutenue en 1997

à Toulouse, ENSAE .

  • Titre traduit

    ˜A œfictitious domain method for the electromagnetic scattering by 3D structures


  • Pas de résumé disponible.


  • Résumé

    Une nouvelle méthode de domaines fictifs est proposée pour résoudre l'équation des ondes scalaires et les équations de Maxwell tridimensionnelles en régime temporel pour des obstacles à frontières bornées. Cette méthode consiste à prolonger l'inconnue à l'intérieur des obstacles et à introduire une nouvelle inconnue définie sur les frontières des objets diffractants. Cette nouvelle inconnue s'interprète comme un multiplicateur de Lagrange. Une relation entre l'onde scalaire ou électromagnétique et le multiplicateur de Lagrange permet d'imposer la condition aux limites de Dirichlet. Dans le cas des équations de Maxwelle, la multiplicateur de Lagrange s'interprète aussi comme une densité surfacique de courant électrique sur les frontières métalliques. Deux maillages sont introduits pour définir le problème discret : un maillage volumique de type différences finies et un maillage surfacique conforme des frontières métalliques de type équation intégrale. L'intersection de ces deux maillages permet de calculer dans le cas discret le couplage entre l'onde et le multiplicateur de Lagrange. Le schéma numérique obtenu est simple et stable sous une condition CFL classique. Le point théorique central de la méthode des domaines fictifs est la preuve d'une condition inf-sup uniforme qui apparaît comme une relation de compatibilité entre les deux maillages utilisés. La mise en oeuvre numérique de la résolution des équations de Maxwell 3D en régime temporel par la méthode des domaines fictifs est décrite, et les résultats obtenus montrent l'efficacité de cette nouvelle technique de calcul numérique.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (215 p.)
  • Annexes : Bibliogr. p.213-215

Où se trouve cette thèse ?

  • Bibliothèque : Institut Supérieur de l'Aéronautique et de l'Espace. Service documentation.
  • Disponible pour le PEB
  • Cote : 1997/228 GAR
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.