Construction de solutions singulieres pour certaines equations aux derivees partielles elliptiques semi-lineaires

par YOMNA REBAI

Thèse de doctorat en Sciences et techniques communes

Sous la direction de Frank Pacard.

Soutenue en 1997

à Cachan, Ecole normale supérieure .

    mots clés mots clés


  • Résumé

    Les travaux presentes dans cette these portent sur la construction de solutions ayant un lieu singulier prescrit pour certaines equations aux derivees partielles elliptiques semi-lineaires. La methode qu'on utilise consiste a definir une famille de solutions approchees au probleme a partir de solutions particulieres radiales, puis a etudier le linearise de l'operateur considere en ces solutions approchees dans des espaces fonctionnels bien choisis en l'occurence les espaces de holder a poids. Enfin, la conclusion est obtenue en utilisant le theoreme des fonctions implicites ou le theoreme du point fixe. Dans le premier article, on construit une solution du probleme avec non-linearite sous-critique de lieu singulier egal a une sous-variete compacte sans bord. Dans le deuxieme article, on s'interesse au cas sur-critique et on montre l'existence de solution faible positive du probleme considere dans la boule unite, ayant une singularite non eliminable en un point fixe proche de l'origine. On donne en particulier une demonstration a un resultat concernant l'equation d'emden enonce par h. Matano. Dans le troisieme article, on generalise le resultat precedent au cas d'un nombre fini de singularites isolees, plus precisement, on montre l'existence d'un ouvert regulier connexe contenant un nombre fini de points fixes et l'existence d'une solution faible positive du probleme qui est singuliere en chacun de ces points. Le quatrieme article de la these est consacre a l'etude du probleme de yamabe singulier. On y montre un resultat de non existence de solution du probleme defini sur un ouvert etoile par rapport a un point qui a une singularite non emilinable en ce point. On y etend aussi les resultats de r. Mazzeo et f. Pacard au cas du probleme de yamabe defini sur un ouvert borne contenant deux points fixes. On donne une condition suffisante portant sur ces deux points pour qu'il existe une solution faible positive du probleme qui est singuliere en chacun de ces points.


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 120 P.
  • Annexes : 88 REF.

Où se trouve cette thèse ?

  • Bibliothèque : Université François Rabelais. Bibliothèque du Laboratoire de Mathématiques et Physique Théorique et du Département de Mathématiques.
  • Disponible pour le PEB
  • Cote : TH-REBAI
  • Bibliothèque : École normale supérieure. Bibliothèque.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.