Optimisation de la méthode multifrontale en vue de sa parallélisation

par Stéphane Negre

Thèse de doctorat en Contrôle des systèmes

Sous la direction de Jacques Carlier.

Soutenue en 1997

à Compiègne .


  • Résumé

    Cette thèse parie sur l'optimisation du traitement parallèle de calcul par éléments finis en utilisant une méthode de résolution par sous-structure particulière appelée méthode multifrontale. L'objectif était de construire un ensemble de méthodes et d'outils pour permettre une parallélisation efficace de cette méthode de résolution. La problématique revêt plusieurs aspects liés à l'optimisation combinatoire et aux graphes. En effet, un maillage par éléments finis peut être vu comme un graphe. Or le temps de calcul pour résoudre le problème dépend directement de la numérotation des éléments finis et donc du graphe associé. La qualité d'une solution doit pouvoir être mesurée. Nous avons donc mis au point des estimateurs de temps de calcul précis pour mesurer les solutions calculées. Nous comparons différentes méthodes heuristiques de la littérature. Nous en proposons plusieurs améliorations performantes et développons deux nouvelles méthodes. La première est une méthode qui hybride plusieurs heuristiques gloutonnes de la littérature. La seconde est basée sur la métaheuristique Tabou. Une autre partie du problème concerne le découpage du maillage en sous-domaines, ce qui revient à réaliser le partitionnement d'un graphe en considérant plusieurs critères. Nous comparons différentes méthodes de la littérature et proposons une nouvelle méthode de découpage. Cette méthode améliore itérativement un découpage initial du maillage par des échanges d'éléments finis entre les sous-domaines. La méthode vise à équilibrer la charge de travail des processeurs en estimant le temps de calcul de chaque sous-domaine. Le temps de calcul d'un sous-domaine dépend lui aussi de la numérotation des éléments finis du sous-domaine correspondant. Cependant, il faut en plus tenir compte des noeuds interfaces entre les sous-domaines. Nous proposons donc des méthodes de numérotation particulières pour pouvoir prendre en compte ce problème supplémentaire. Enfin, quand on effectue un calcul parallèle, il est important de plannifier l'affectation des tâches aux processeurs. Nous avons donc construit et étudié un modèle plus formel en émettant des hypothèses sur les temps de calcul et les temps de fusion des données et nous avons montré qu'une stratégie d'affectation des tâches aux processeurs en domine une autre, communément utilisée dans la communauté de la mécanique numérique. Les résultats de tous les algorithmes exposés sont comparés sur la collection Everstine composée de trente maillages considérés comme représentatifs. Ces résultats montrent la pertinence de nos algorithmes.

  • Titre traduit

    Optimizing the parallelization of the multifrontal method


  • Pas de résumé disponible.


  • Résumé

    This work is concerned with the optimization of the parallelization of a particular finite element resolution method based on a substructuring principle and called the multifrontal method. Our aim was to build a set of methods and tools in order to parallelize this method efficiently. The problem is concerned with combinatorial optimization and graph theory. Indeed a finite element mesh can be modelized as a graph. The computing times spent to solve the problem directly depend on the reordering of an associated graph. Because the quality of a solution has to be measured, we propose accurate computing times estimators to measure our solutions. We compare different heuristics we have found in the litterature. We propose efficient improvements of these heuristics and two original reordering methods. The first one is an hybrid method which interleaves greedy algorithms. The second one is based on the tabu search method which is a metaheuristic. Another problem we are concerned with is the mesh decomposition into substructures. Different methods are compared and a new one is proposed. This method iteratively improves initial mesh decomposition by applying an exchanging principle of the finite elements between substructures. In this way we aim to optimize the load balancing on the processors by estimating the computing times of each substructure. The computing times of a substructure also depend on the finite element reordering of the corresponding substructure. However we have to take into account in addition the boundary nodes between the substructures. We then propose particular reordering methods which take into account this additional problem. When a parallel treatment is performed, it is important to schedule the tasks on the processors. We have proposed and studied a theoretical model assuming some assumptions concerning the computing times (the communications delays and the merging tasks). We have shown that a scheduling strategy dominates another one, widely used in the mechanical and numerical community. The results are compared on the thirty meshes of the Everstine's collection and show the efficiency of our algorithms.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 203 p.
  • Annexes : 101 ref.

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Technologie de Compiègne. Service Commun de la Documentation.
  • Disponible pour le PEB
  • Cote : 1997 NEG 1045

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université Grenoble Alpes (Saint-Martin d'Hères, Isère). Bibliothèque et Appui à la Science Ouverte. Bibliothèque universitaire Joseph-Fourier.
  • Accessible pour le PEB
  • Cote : MF-1997-NEG
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.