Tomographie des variétés singulières et théorèmes de Lefschetz

par Christophe Eyral

Thèse de doctorat en Sciences

Sous la direction de Denis Cheniot.

Soutenue en 1997

à Aix-Marseille 1 .


  • Pas de résumé disponible.


  • Résumé

    Il est classique d'etudier la topologie d'un objet de geometrie algebrique par tomographie, c'est-a-dire en considerant ses sections par des hyperplans paralleles. Le travail que nous proposons dans la these est une etude par tomographie des sous-varietes algebriques de l'espace projectif complexe. Nous examinons d'abord le cas simplifie du complementaire d'un ensemble algebrique projectif. Nous considerons ses sections par les hyperplans d'un pinceau. Nous comparons les groupes d'homotopie de ce complementaire avec ceux d'une de ses sections hyperplans generiques, sur la base de comparaisons (axe du pinceau - hyperplan generique) et (axe - hyperplans exceptionnels du pinceau). Notre theoreme peut servir de base a des raisonnements par recurrence sur la dimension de l'ensemble algebrique dont on considere le complementaire. Par exemple, une recurrence amorcee par un calcul direct explicite dans le cas ou cette dimension est nulle permet de retrouver le theoreme de zariski-lefschetz homotopique classique. Nous etudions ensuite le cas general des varietes quasi-projectives singulieres. Nous demontrons un theoreme sur les pinceaux de sections hyperplanes de la variete analogue a celui du cas d'un complementaire, mais avec des restrictions reliees a la profondeur homotopique rectifiee globale, de la variete (analogue global de la notion de profondeur homotopique rectifiee de grothendieck). Toutefois, cette restriction ne porte que sur la profondeur homotopique rectifiee globale le long d'un certain ensemble fini de points. Puis, par une recurrence amorcee par un calcul direct explicite dans le cas ou la dimension de l'espace projectif ambiant est 1, nous demontrons, grace a ce resultat, un nouveau theoreme du type de lefschetz singulier, generalisant le theoreme de lefschetz singulier de hamm-le et goresky-macpherson.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 118 p
  • Annexes : Bibliogr.: p. 115-118

Où se trouve cette thèse ?

  • Bibliothèque : Université d'Aix-Marseille (Marseille. St Charles). Service commun de la documentation. Bibliothèque universitaire de sciences lettres et sciences humaines.
  • Disponible pour le PEB
  • Bibliothèque : Université d'Aix-Marseille (Marseille. St Charles). Service commun de la documentation. Bibliothèque universitaire de sciences lettres et sciences humaines.
  • Non disponible pour le PEB
  • Bibliothèque : Université d'Aix-Marseille (Marseille. St Charles). Service commun de la documentation. Bibliothèque universitaire de sciences lettres et sciences humaines.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.