Espace de Wiener et théorie bidimensionnelle des champs

par Pierre Gosselin

Thèse de doctorat en Mathématiques

Sous la direction de Marc Rosso.

Soutenue en 1996

à Strasbourg 1 .


  • Résumé

    Cette these se situe a la rencontre de la theorie des champs et du calcul stochastique. Nous decrivons en termes de distributions sur l'espace de wiener certains objets de la theorie des champs tels que les operateurs vertex et le champ bosonique. Nous etudions egalement une action inedite du groupe des diffeomorphismes sur l'espace de wiener. Ainsi, a l'aide des formules d'integration par partie de cameron-martin, on obtient de facon rigoureuse une representation de l'algebre de virasoro. Cette representation s'interprete en terme de changement de temps et d'operateur de toeplitz. Par ailleurs, une correspondance entre un espace de fonction tests sur l'espace de wiener et la quantification d'un espace de series formelles nous permet d'obtenir sous forme probabiliste les solutions soliton et les transformations de backlund de la theorie korteweg-de vries


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (140 p.)
  • Annexes : Notes bibliogr.

Où se trouve cette thèse ?

  • Bibliothèque : Université de Strasbourg. Service commun de la documentation. Bibliothèque Danièle Huet-Weiller.
  • Accessible pour le PEB
  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie . Section Mathématiques-Informatique Recherche.
  • Disponible pour le PEB
  • Cote : THESE 02599
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.