Equations dirrérentielles, relations algébriques et invariants

par Elie Compoint

Thèse de doctorat en Mathématiques

Sous la direction de Daniel Bertrand.

Soutenue en 1996

à Paris 6 .

    mots clés mots clés


  • Résumé

    On considere une equation differentielle, l, d'ordre n a coefficients dans le corps k des fonctions rationnelles a coefficients dans c, et une matrice fondamentale de solutions u. On etudie alors les relations algebriques, a coefficients dans k, entre les elements d'une partie y de u. Il y a de nombreuses motivations a l'etude de ce probleme, notamment arithmetique, via le theoreme de siegel-shidlovskii. Le premier chapitre etudie le cas ou y est la premiere ligne de u. Dans le prolongement des travaux de fano, puis singer, on obtient un critere de resolubilite de l'equation differentielle l, en termes d'equations d'ordre inferieur a n. Dans le second chapitre y est une colonne de u et l un operateur hypergeometrique. On calcule alors le degre de transcendance, sur k, du corps differentiel, engendre sur k, par toute solution de l (ameliorant ainsi des majorations de salichov). On en deduit des resultats de theorie des nombres, via le theoreme de siegel-shidlovskii. Dans le troisieme et dernier chapitre on suppose connu le groupe de galois differentiel, g, de l (c'est le cas lorsque l est hypergeometrique). En supposant g reductif et unimodulaire, on donne un algorithme de calcul de l'ideal des relations algebriques a coefficients dans k liant tous les elements de la matrice u (ici u est egal a y)


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (vi-77 p.)
  • Annexes : Bibliogr. (25 réf.)

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie . Section Mathématiques-Informatique Recherche.
  • Accessible pour le PEB
  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie . Section Mathématiques-Informatique Recherche.
  • Disponible pour le PEB
  • Cote : THESE 01501
  • Bibliothèque : Centre Technique du Livre de l'Enseignement supérieur (Marne-la-Vallée, Seine-et-Marne).
  • Disponible pour le PEB
  • Cote : PMC RT P6 1996
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.