Grassmanniennes de dimension infinie, groupes de lacets et opérateur vertex

par Abdelhay Semlali

Thèse de doctorat en Mathématiques

Sous la direction de A. Roux.

Soutenue en 1996

à Metz .


  • Résumé

    Dans la première partie de ce travail, on a étudié les grassmanniennes d'un espace de Hilbert séparable, de dimension infinie, plus exactement le lien de la grassmannienne régulière (hilbertienne) à ses composantes connexes, au groupe général linéaire restreint, et aux ouverts de l'atlas associés à sa structure hilbertienne. On a étudié aussi les composantes connexes d'une grassmannienne dense dans la grassmannienne régulière, le lien de ses composantes connexes à sa décomposition en cellules de Schubert. A la fin de cette partie, on démontre le lien topologique qui existe entre les grassmanniennes de dimension infinie et les grassmanniennes de dimension finie. Dans la deuxième partie, on a étudié le lien des groupes de lacets aux grassmanniennes, et l'équivalent de l'action de l'opérateur vertex sur les éléments de la grassmannienne associés à la fonction tau

  • Titre traduit

    Infinite dimensional grassmannians, loop groups and vertex operator


  • Pas de résumé disponible.


  • Résumé

    In the first part of this work, we studied the infinite dimensional Grassmannians of a separable Hilbert space. More exactly, the link between hilbertian grassmannians and its connected components, the restricted general linear group, and the open sets covering of this hilbertian grassmannian. We studied also the connected components of a dense grassmannian of a hilbertian grassmannian, the link between its connected components and its cellular Schubert decomposition. At the end of this part, we show the topologic relation existing between the infinite dimensional grassmannians and the finite dimensional once. In the second part of this work, we studied the link between the loop groups and the grassmannians, we studied also the operator vertex's action on the grassmannian's elements associated to the tau function

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (121 f.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. f. 120-121

Où se trouve cette thèse ?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. Bibliothèque du Saulcy.
  • Non disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.