Sur quelques propriétés des algèbres de Hopf

par Mustapha Ameur

Thèse de doctorat en Mathématiques

Sous la direction de André Roux.

Soutenue en 1996

à Metz .


  • Résumé

    Dans cette thèse, on étudié quelques propriétés des algèbres de Hopf et de leurs modules. Dans un premier temps on expose les travaux de Radford, de Nichols et Zoeller sur la liberté des algèbres de Hopf en tant que modules sur leurs sous-algèbres de Hopf, grâce à quoi on montre qu'une algèbre de Hopf graduée connexe est libre sur ses sous-algèbres de Hopf. On montre ensuite que si une algèbre de Hopf graduée connexe sur un corps commutatif de caractéristique nulle, ou tout élément homogène de degré strictement positif est nilpotent, alors elle est commutative et cocommutative, par suite elle est l'algèbre extérieure sur ses éléments primitifs, ce qui généralise un résultat de Hopf sans l'hypothèse de commutativite en dimension finie. En fin, on généralise des résultats de j. Bergen, en donnant des conditions impliquants que les espaces d'invariants associes a des sous-algèbres de Hopf différentes sont distincts

  • Titre traduit

    On some properties of Hopf algebras


  • Résumé

    In this work, we study somes properties of Hopf algebras and of their modules. First we expose the works of Radford, Nichols and Zoeller on the freeness of Hopf algebras, and we show that a connected graded Hopf algebra is free over its Hopf subalgebras. Second we show that if a graded connected Hopf algebra over a commutative field of characteristic 0, where all homogenous elements of strictly positive degree are nilpotents, then it's commutative and cocommutative, hence it's the exterior algebra over the primitive elemnts, which generalise a result of Hopf without commutativity in finite dimension. In the end, we generalise the results of J Bergen, we give conditions implying that the spaces of invariants associated to a differents Hopf subalgebras are distincts

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (57 f.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. f. 57

Où se trouve cette thèse ?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. Bibliothèque du Saulcy.
  • Non disponible pour le PEB

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire Joseph-Fourier.
  • Non disponible pour le PEB
  • Cote : MF-1996-AME
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.