Problèmes elliptiques dans des domaines à points cuspides

par Kheira Belahdji

Thèse de doctorat en Sciences. Analyse numérique

Sous la direction de Mohand Moussaoui.

Soutenue en 1996

à l'Ecully. Ecole centrale de Lyon .


  • Résumé

    Ce travail a pour but principal l'etude de problemes aux limites elliptiques dans des domaines non reguliers, presentant en particulier des points de rebroussement. On s'est interesse plus precisement a la regularite l#p des solutions. Dans ce contexte, il est etabli la regularite w#2#,#p(resp w#3#,#p) de la solution du probleme de dirichlet pour l'equation de laplace (resp de bilaplacien) dans un ouvert de ir#3 de classe c#2 en dehors d'un nombre fini de points cuspides, pour une donnee l#p(resp w#-#1#,#p). On a egalement etudie le probleme de dirichlet pour l'equation de laplace dans un domaine de ir#3 encore moins regulier, contenant a la fois un point cuspide a l'origine et une arete. On demontre que pour une donnee l#p, p 2, la solution se decompose en une partie reguliere appartenant a w#2#,#p () et une partie singuliere dans h#1() a laquelle on donne une forme explicite. On resout aussi le meme probleme dans un domaine de ir#3 presentant des aretes cuspides. On termine ce travail par une extension des resultats preetablis au cas d'un ouvert de ir#2 de classe c#2 sauf en un certain nombre fini de points cuspides. On montre en particulier un resultat de regularite pour le systeme de stokes


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (70 f.)
  • Notes : Publication autorisée par le jury
  • Annexes : 22 réf.

Où se trouve cette thèse ?

  • Bibliothèque : Ecole centrale de Lyon. Bibliothèque Michel Serres.
  • Disponible pour le PEB
  • Cote : T1631
  • Bibliothèque : Ecole centrale de Lyon. Bibliothèque Michel Serres.
  • Non disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.