Retines artificielles stochastiques : algorithmes et mise en uvre

par DONALD PREVOST

Thèse de doctorat en Sciences appliquées

Sous la direction de P. CHAVEL.

Soutenue en 1995

à Paris 11 .

    mots clés mots clés


  • Résumé

    Cette these traite de problemes de vision bas-niveau, lesquels entrent dans la classe des problemes inverses mal-poses au sens mathematique. Leur resolution est envisagee sous l'angle de l'approche bayesienne sur champ de markov. Specifiquement, nous etudions les algorithmes d'optimisation applicables a des fonctions d'energie semi-quadratiques, telles que rencontrees en vision bas-niveau (detection de contours, segmentation des textures, determination de mouvement ou stereovision). Ces energies sont definies sur un champ de markov couple. Notre premier objectif est de determiner des approches algorithmiques avantageuses selon les criteres de l'optimalite de la solution ; de la qualite de la restauration, des perspectives de parallelisation et de realisation materielle. Notre demarche consiste a considerer une tache simple: la restauration d'images avec prise en compte des discontinuites. Nous avons compare differents algorithmes dedies a cette tache, puis nous avons propose une methode stochastique, simple et parallelisable, que nous avons appelee relaxation quasi-statique (rqs). Le second objectif releve de l'implantation materielle optoelectronique. Nous proposons une architecture parallele de mise en uvre pour l'algorithme rqs. Celle-ci reflete la structure du champ de markov couple: elle est base sur l'operation conjuguee d'un reseau de resistance stochastique et d'un module binaire. Afin de demontrer la faisabilite de machines d'optimisation stochastique operant a cadence video, nous avons concu et teste un systeme realisant des calculs de monte-carlo sur le probleme du verre de spin. Ce systeme utilise un circuit integre cmos optoelectronique (collaboration avec l'ief, contrat dret n 92-139) et un generateur optique de figures de speckle


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 150 P.
  • Annexes : 74 REF.

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud (Orsay, Essonne). Service Commun de la Documentation. Section Sciences.
  • Accessible pour le PEB
  • Bibliothèque : Centre Technique du Livre de l'Enseignement supérieur (Marne-la-Vallée, Seine-et-Marne).
  • Disponible pour le PEB
  • Cote : TH2014-012580
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.