Méthodes asymptotiques-numériques pour le calcul de bifurcations de Hopf et de solutions périodiques

par My El Hassan Ben Saadi

Thèse de doctorat en Mathématiques

Sous la direction de Michel Potier-Ferry.

Soutenue en 1995

à Metz .


  • Résumé

    Dans ce travail, nous avons présenté une étude sur les équations différentielles ordinaires admettant des solutions périodiques ou des points de bifurcations de Hopf. Pour cette étude, nous avons appliqué des techniques approximatives dans l'esprit des méthodes asymptotiques-numériques qui n'avaient été appliquées jusqu'à présent qu'en statique. Nous avons commencé notre test sur des équations différentielles conservatives ou dissipatives à un seul degré de liberté. Le domaine de validité d'une représentation en séries entières des solutions périodiques est toujours limité par le rayon de convergence. Grâce aux techniques discutées (approximants de Padé, technique de projection et transformation d'Euler), on a pu augmenter ce domaine de validité à une valeur très élevée. Dans la deuxième partie nous nous sommes intéressés à la détection des points de bifurcation de Hopf par des algorithmes attachés à la méthode asymptotique-numérique. Ces points sont détectés alors au moyen d'un problème linéaire et perturbé dépendant de deux paramètres réels, et qui se prête bien à la résolution par les techniques de développements en séries entières. On introduit un indicateur de bifurcation qui est ensuite calculé par des séries entières de deux variables. Ensuite, nous avons caractérisé les points de bifurcation de Hopf à partir de cet indicateur. On a également montré que l'indicateur est en réalité une fraction rationnelle de ces paramètres. Les séries peuvent donc être remplacées par des approximants de Padé et conduire à la valeur exacte de l'indicateur. On a également montré que des stratégies réduites, c'est-à-dire des stratégies qui utilisent moins de termes dans la série, permettaient aussi de déterminer le point de bifurcation de Hopf. Dans cette thèse, l'efficacité de ces procédures a été testée sur des problèmes à petit nombre de degrés de liberté. Les applications à des problèmes à grand nombre de liberté font l'objet d'autres thèses à Metz

  • Titre traduit

    Asymptotic-numerical methods to compute the hopf bifurcation and the periodic solutions


  • Pas de résumé disponible.


  • Résumé

    In this work, we have presented a study on the ordinary differential equations which have periodic solutions or Hopf bifurcation points. For this study, we have applied an asymptotic-numerical methods that have been applied up to now only in static. We have started our test on the conservative differential equations or dissipative ones which have one degree of freedom. The domain of validity of the representation by power series is limited by a raduis of convergence. By use of the techniques discuted (approximants of Padé, projection technique and transformation of Euler), we have extended this domain up to a large value. In the second part, we have detected the Hopf bifurcation points by an asymptotic numerical algorithm. So, these points are detected through a perturbed and linear problem which depends on two real parameters. Indeed, we have introduced an Hopf bifurcation index which is expanded firstly into power series of two parameters. Then, we have caracterized the Hopf bifurcation points from this index. Since, we have showed that the index is a rational fraction. So, the series can be replaced by the approximants of Padé which lead to the exact value of the index. We have also showed that the "reduced strategies", i. E, the approximants of Padé which replace the series truncated at inferior orders, permit also to detect the Hopf bifurcation points. The efficiency, of these procedures is tested on the problems with small number of degrees of freedom. The applications on the systems with great number of degrees of freedom are the aim of others thesis in Metz

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (162 f.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. f. 156-162

Où se trouve cette thèse ?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. Bibliothèque du Saulcy.
  • Non disponible pour le PEB

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire de Sciences.
  • Non disponible pour le PEB
  • Cote : MF-1995-BEN
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.