Complexité de suites - fonctions de Carlitz

par Michel Koskas

Thèse de doctorat en Mathématiques pures

Sous la direction de Jean-Paul Allouche.

Soutenue en 1995

à Bordeaux 1 .


  • Résumé

    La complexité d'une suite sur un alphabet fini a est le nombre de facteurs d'une longueur donnée de cette suite. Nous démontrons dans la première partie de cette thèse que pour toute fonction f positive, croissante en o(n#) pour tout > 0, et pour tout rationnel r 1, il existe une suite de Toeplitz (qu'on construit explicitement) de complexité de l'ordre de f(n)n#r. On démontre de même qu'il existe des suites presques périodiques (qu'on construit explicitement) d'entropie nulle mais de complexité plus grande que tout polynôme. Nous calculons la complexité des suites de p-pliage et démontrons que la série formelle associée est transcendante. Dans la seconde partie de cette the��se, nous démontrons au moyen d'automates le critère de transcendance de mathan. Nous donnons une mesure de non-q-automaticité des suites dont la série associée vérifie les hypothèses du critère de Mathan

  • Titre traduit

    Complexities of sequences Carlitz functions


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 63 p.
  • Notes : Publication autorisée par le jury

Où se trouve cette thèse ?

  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque Sciences et Techniques.
  • Disponible pour le PEB
  • Cote : FT 95.B-1237
  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque Sciences et Techniques.
  • Non disponible pour le PEB
  • Cote : FTR 95.B-1237
  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque Sciences et Techniques.
  • Accessible pour le PEB
  • Bibliothèque : Université de Versailles Saint-Quentin-en-Yvelines. Direction des Bibliothèques et de l'Information Scientifique et Technique-DBIST. Bibliothèque universitaire Sciences et techniques.
  • Disponible pour le PEB
  • Cote : T950513
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.