Vitesse de convergence d'algorithmes particulaires stochastiques et application à l'équation de Burgers

par Mireille Bossy

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Denis Talay.

Soutenue en 1995

à Aix-Marseille 1 .


  • Résumé

    La convergence de la methode de vortex aleatoires pour l'equation de navier-stokes n'a pas encore ete etablie dans un sens pleinement satisfaisant. Ce probleme a fortement motive l'etude d'algorithmes particulaires pour certaines e. D. P. Non lineaires, en particulier, l'equation de burgers que nous presentons dans ce memoire. L'objectif de ce travail est de donner de nouveaux resultats de vitesse de convergence de methodes particulaires stochastiques, a l'aide de l'interpretation probabiliste d'e. D. P non lineaires en terme de systeme de particules en interaction. La theorie des processus stochastiques permet d'interpreter les e. D. P non lineaires de type mckean-vlasov comme des equations limites pour des systemes de particules en interaction. Nous en deduisons un algorithme simple et naturel, fonde sur la simulation du systeme de particules sous-jacent. Nous obtenons la vitesse de convergence de l'algorithme, lorsque les noyaux d'interaction sont lipschitziens et bornes. Nous donnons ensuite une nouvelle interpretation probabiliste de l'equation de burgers en terme de systeme de particules en interaction (le noyau d'interaction correspondant est discontinu) et montrons que le systeme de particules possede la propriete de propagation du chaos. Nous etudions la convergence (theorique et numerique) de l'algorithme. La vitesse de convergence que nous obtenons semble etre ce que l'on peut esperer obtenir pour cette famille d'algorithmes et donne un eclairage theorique nouveau a la methode de vortex aleatoires

  • Titre traduit

    Convergence rate of stochastic particles methods and application to the burgers equation


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 160 f

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université d'Aix-Marseille (Marseille. St Charles). Service commun de la documentation. Bibliothèque universitaire de sciences lettres et sciences humaines.
  • Accessible pour le PEB
  • Bibliothèque : Université d'Aix-Marseille (Marseille. St Charles). Service commun de la documentation. Bibliothèque universitaire de sciences lettres et sciences humaines.
  • Disponible pour le PEB
  • Bibliothèque : Université d'Aix-Marseille (Marseille. St Charles). Service commun de la documentation. Bibliothèque universitaire de sciences lettres et sciences humaines.
  • Disponible pour le PEB

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université Grenoble Alpes (Saint-Martin d'Hères, Isère). Bibliothèque et Appui à la Science Ouverte. Bibliothèque universitaire Joseph-Fourier.
  • Accessible pour le PEB
  • Cote : MF-1995-BOS
  • Bibliothèque : Université Paris-Est Créteil Val de Marne. Service commun de la documentation. Section multidisciplinaire.
  • PEB soumis à condition
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.