Modelisation mathematique et simulation numerique de problemes inhomogenes en physique des semiconducteurs

par AHMED YAMNAHAKKI

Thèse de doctorat en Physique

Sous la direction de F. POUPAUD.

Soutenue en 1994

à Nice .

    mots clés mots clés


  • Résumé

    Le but de cette these est de contribuer a la modelisation mathematique et a la simulation des dispositifs semiconducteurs fortement inhomogenes. Dans le deuxieme chapitre, on s'interesse a la limite diffusive des equations de boltzmann, pour obtenir une approximation du second ordre pour la concentration des porteurs. Les equations de derive-diffusion sont inchangees mais un correcteur de couches limites, qui est proportionnel au flux de courant, apparait dans les conditions aux limites pour la concentration. Le coefficient de proportionnalite est calcule par la resolution par methode spectrale d'un probleme de demi-espace. Ces conditions aux limites et celles classiques sont comparees numeriquement sur un probleme physique. Le troisieme chapitre est consacre a l'extention des programmes de simulation particulaire pour le traitement de ces structures inhomogenes. Dans ces dispositifs, la dynamique est gouvernee par les conditions aux limites qu'il faut prendre en compte precisement. La geometrie est unidimensionnelle en espace et tridimensionnelle avec axisymetrie en vecteur d'onde. Il s'agit donc de resoudre le systeme couple de boltzmann-poisson. Le terme de collision, non lineaire, tient compte de plusieurs interactions. Nous presentons les resultats de deux simulations particulaires de la diode schottky. La premiere nous permettra d'obtenir les quantites macroscopiques: potentiel, champ, densite la deuxieme, ou on se restreint a un operateur de collision lineaire et ou on ne simule que la partie hors-equilibre des porteurs, nous donne les autres quantites physiques dans le quatrieme et le cinquieme chapitre, on s'interesse a une analyse asymptotique du systeme vlasov-poisson pour la modelisation d'une diode schottky, dans les cas uni et multidimensionnel respectivement. Ce qui permettra d'expliquer les resultats numeriques obtenus dans le troisieme chapitre


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 144 P.
  • Annexes : 60 REF.

Où se trouve cette thèse ?

  • Bibliothèque : Université Nice Sophia Antipolis. Service commun de la documentation. Section Sciences.
  • Accessible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.