Contribution à l'analyse numérique de modèles d'écoulements polyphasiques en milieu poreux à l'aide de méthodes d'éléments finis mixtes et hybrides

par Catherine Jensen

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Jean-Marie Thomas.

Soutenue en 1993

à Pau .


  • Pas de résumé disponible.


  • Résumé

    Cette thèse est une étude de systèmes d'équations aux dérivées partielles issues d'un modèle d'écoulement des fluides étudié en ingénierie pétrolière. Au départ, un système fortement couplé de trois équations non linéaires, de type parabolique, exprime les relations entre la pression et les saturations en eau et en huile. Le premier chapitre traite de la semi-discrétisation en temps du système par la méthode d'Euler rétrograde. On démontre l'existence d'une solution au système obtenu (méthode de point fixe), mais pas l'unicité, et on prouve que les saturations approchées sont positives et inférieures à un. Le deuxième chapitre étudie l'approximation, par une méthode d'éléments finis, du problème semi-discrétisé et on montre l'existence d'une solution, sans résultat de signe pour les saturations. Les deux chapitres suivants reprennent ce schéma pour un problème simplifié, à deux inconnues (saturation en huile et pression) en utilisant une formulation variationnelle mixte et une méthode d'éléments finis mixte. Au dernier chapitre on étudie une méthode hybride d'éléments finis ou l'une des inconnues approche les valeurs de la saturation sur les cotes de la triangulation. Une modification des espaces permet de montrer que la matrice du système relatif à cette inconnue est une m-matrice. En annexe on étudie une méthode d'éléments finis mixte pour une équation elliptique sur un domaine ayant une frontière courbe et on utilise des éléments courbes pour conserver l'ordre naturel d'approximation lorsque la frontière est suffisamment régulière.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol (pagination multiple)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliographie : 4 réf.

Où se trouve cette thèse ?

  • Bibliothèque : Université de Pau et des Pays de l'Adour. Service Commun de la Documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : T-2526
  • Bibliothèque : Université de Pau et des Pays de l'Adour. Service Commun de la Documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : USG 10949
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.