Systèmes de spins synchronisés : modèles de Hopfield stochastiques

par Olivier François

Thèse de doctorat en Mathématiques

Sous la direction de Jacques Demongeot.

Soutenue en 1992

à Grenoble 1 .

    mots clés mots clés


  • Pas de résumé disponible.


  • Pas de résumé disponible.


  • Résumé

    Grace aux travaux de o. Koslov et n. Vasiliev, on connait les mesures reversibles d'un noyau de transition synchrone, invariant par translation, correspondant a une evolution markovienne de spins sur un reseau. Lorsque le potentiel local relatif a ce noyau est positif, les grandeurs thermodynamiques usuelles de ces mesures sont bien definies. On en deduit des conditions de non-ergodicite de la chaine de markov en question. En temps continu, les systemes etudiees ont ete introduits par t. M. Liggett. Apres avoir obtenu de nouvelles conditions d'existence de generateurs markoviens associees a ces systemes, nous caracterisons leurs mesures reversibles. Ce resultat permet de generaliser la notion de modele d'ising stochastique de maniere naturelle. Le probleme de la convergence des semigroupes correspondants peut etre aborde par les techniques classiques: variation de l'energie libre ou theorie l#2. La notion d'attractivite connue pour les systemes de spins classiques s'etend naturellement aux systemes de particules qui respectent l'ordre sur le reseau. Quand ce n'est pas le cas, la generalisation de cette notion est bien moins naturelle. Ces resultats sont appliques a l'ergodicite de semigroupes correspondants a des systemes de retournement par paires. La derniere partie est consacree a l'application des limites de mac-kean-vlasov aux modeles de hopfield. Cela permet de decrire l'equilibre de ces systemes sans se contraindre aux hypotheses de symetrie ou de linearite habituelles

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 70 p

Où se trouve cette thèse ?

  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire de Sciences.
  • Accessible pour le PEB
  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire de Sciences.
  • Disponible pour le PEB
  • Cote : TS 92/GRE1/0020
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.