Convexité en topologie de contact

par Emmanuel Giroux

Thèse de doctorat en Sciences. Mathématiques

Sous la direction de Étienne Ghys.

Soutenue en 1991

à Lyon 1 .

Le jury était composé de Étienne Ghys.


  • Résumé

    Le texte est consacre a l'etude des structures de contact qui sont invariantes par le gradient d'une fonction de morse. On donne en particulier, en dimension 3, une condition topologique necessaire et suffisante pour l'existence de telles structures. Pour cela, on explique comment utiliser les champs de vecteurs qui preservent une structure de contact pour decrire le feuilletage caracteristique des surfaces et ses deformations au cours de certaines isotopies


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (39 f.)
  • Annexes : Bibliogr. f. 39

Où se trouve cette thèse ?

  • Bibliothèque : Université Claude Bernard (Villeurbanne, Rhône). Service commun de la documentation. BU Sciences.
  • Disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.