Decomposition de laffey-west globale

par ZINEB BOULMAAROUF BENOUALI

Thèse de doctorat en Sciences et techniques communes

Sous la direction de Jean-Philippe Labrousse.

Soutenue en 1990

à Nice .

    mots clés mots clés


  • Résumé

    Soit b un espace de banach et soit l(b) l'espace des operateurs lineaires continus definis sur b et a valeurs dans b. Soit a dans l(b), notons par m(a) l'ensemble des nombres complexes z tels que a-zi est surjectif ou injectif a image fermee. Dans ce travail nous etablissons un resultat proche d'une generalisation commune d'un resultat de laffey-west d'un cote et d'apostol d'un autre. Plus precisement, nous montrons que: soit h un espace de hilbert et a dans l(h), quelque soit l'entier naturel n et le compact k inclu dans la region semi-fredholm de a, il existe un operateur de rang fini f dans l(h) tel que: i) k est inclus dans m(a+f), ii) quelque soit l'entier naturel j plus petit ou egal a n, (affa)a#j (affa)=0. En outre, toujours dans le cadre hilbertien, nous avons traite le probleme analogue pour les operateurs fermes (non bornes). Dans ce cas nous sommes amenes a introduire des hypotheses supplementaires. Nous avons specialement examine le cas des operateurs quasi normaux car dans ce cadre la restriction (j plus petit ou egal a n) dans ii) peut etre eliminee. Enfin, en utilisant une technique differente, nous avons traite le cas le plus general des operateurs fermes definis dans un espace de banach, sous la restriction importante, toutefois, que k soit un ensemble fini


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Annexes : 16 REF

Où se trouve cette thèse ?

  • Bibliothèque : Université Nice Sophia Antipolis. Service commun de la documentation. Section Sciences.
  • Accessible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.