Algèbres différentielles et anomalies en théorie des champs (supersymétriques)

par François Gières

Thèse de doctorat en Physique

Sous la direction de Raymond Stora.

Soutenue en 1988

à Paris 11 , en partenariat avec Université de Paris-Sud. Faculté des Sciences d'Orsay (Essonne) (autre partenaire) .


  • Résumé

    Ce travail présente divers aspects de la formulation géométrique des théories des champs supersymétriques et de leur quantification à la BRS. Pour commencer nous donnons une méthode élémentaire pour décrire des champs fermioniques anticommutants (et des fonctionnelles dépendant de ceux-ci) tout en évitant l'introduction ad hoc d'algèbres de Grassmann de dimension infinie qui ne sont pas générées par le continuum d'espace-temps. Dans la suite la structure géométrique du super­espace rigide et des théories de Yang-Mills supersymétriques (simples et étendues) est élaborée dans tous ses détails et la forme de certaines algèbres typiques dépendant des champs est clarifiée. Pour compléter cette étude, nous avons inclut une discussion approfondie des algèbres différentielles de BRS et de la détermination algébrique des anomalies. Le problème des anomalies dans les théories de jauge supersymétriques est adressé aussi bien dans le formalisme des superchamps que dans celui des composantes. Ces questions sont poursuivies dans le contexte des théories des champs localement supersymétriques avec l'étude de la super- gravité bidimensionelle (1,1) et (1,0). Pour celle-ci nous déterminons d'une façon géométrique supersymétrique de l'action effective dont la variation reproduit le multiplet des anomalies conformes.

  • Titre traduit

    Differential algebras and anomalies in (supersymmetric) field theories


  • Résumé

    This work presents various aspects of the geometric formulation of supersymmetric field theories and of their BRS quantization. To start with, we give an elementary method for describing anticommuting fermionic fields (and functionals thereof) while avoiding any ad hoc introduction of infinite dimensional Grassmann algebras that are not generated by the space-time continuum. Following on, the geometric structure of rigid superspace and supersymmetric Yang-Mills theories is worked out in detail and the set-up of some typical field dependant Lie and differential algebras is elucidated. For completeness we have included an informative discussion of BRS differential algebras and of the algebraic determination of anomalies. More specifically the anomaly problem for supersymmetric gauge theories is adressed both at the level of superfields and component fields. These questions are further pursued in the context of locally supersymmetric theories with the study of two-dimensional (1,1) and (1,0) super­gravity. For the latter we set up the BRS differential algebra in a geometric way and we construct the locally supersymmetric form of the effective action whose superconformal variation leads to the multiplet of conformal anomalies.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (268 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 257-268

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud (Orsay, Essonne). Service Commun de la Documentation. Section Sciences.
  • Disponible pour le PEB
  • Cote : 0g ORSAY(1988)113
  • Bibliothèque : Centre Technique du Livre de l'Enseignement supérieur (Marne-la-Vallée, Seine-et-Marne).
  • Disponible pour le PEB
  • Cote : TH2014-034963
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.